Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2013-Apr

Performance of an herbivorous leaf beetle (Phratora vulgatissima) on Salix F2 hybrids: the importance of phenolics.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Mikaela Torp
Anna Lehrman
Johan A Stenberg
Riitta Julkunen-Tiitto
Christer Björkman

Anahtar kelimeler

Öz

The genotype of the plant determines, through the expression of the phenotype, how well it is suited as food for herbivores. Since hybridization often results in profound genomic alterations with subsequent changes in phenotypic traits, it has the potential to significantly affect plant-herbivore interactions. In this study, we used a population of F2 hybrids that originated from a cross between a Salix viminalis and a Salix dasyclados genotype, which differed in both phenolic content and resistance to the herbivorous leaf beetle Phratora vulgatissima. We screened for plants that showed a great variability in leaf beetle performance (i.e., oviposition and survival). By correlating leaf phenolics to the response of the herbivores, we evaluated the importance of different phenolic compounds for Salix resistance to the targeted insect species. The performance of P. vulgatissima varied among the F2 hybrids, and two patterns of resistance emerged: leaf beetle oviposition was intermediate on the F2 hybrids compared to the parental genotypes, whereas leaf beetle survival demonstrated similarities to one of the parents. The findings indicate that these life history traits are controlled by different resistance mechanisms that are inherited differently in the hybrids. Salicylates and a methylated luteolin derivative seem to play major roles in hybrid resistance to Phratora vulgatissima. Synergistic effects of these compounds, as well as potential threshold concentrations, are plausible. In addition, we found considerable variation in both distributions and concentrations of different phenolics in the F2 hybrids. The phenolic profiles of parental genotypes and F2 hybrids differed significantly (e.g., novel compounds appeared in the hybrids) suggesting genomic alterations with subsequent changes in biosynthetic pathways in the hybrids.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge