Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2003-Jan

Responses by coleoptiles of intact rice seedlings to anoxia: k(+) net uptake from the external solution and translocation from the caryopses.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
S Huang
H Greenway
T D Colmer

Anahtar kelimeler

Öz

This study evaluated the effects of anoxia on K(+) uptake and translocation in 3-4-d-old, intact, rice seedlings (Oryza sativa L. cv. Calrose). Rates of net K(+) uptake from the medium over 24 h by coleoptiles of anoxic seedlings were inhibited by 83-91 %, when compared with rates in aerated seedlings. Similar uptake rates, and degree of inhibition due to anoxia, were found for Rb(+) when supplied over 1.5-2 h, starting 22 h after imposing anoxia. The Rb(+) uptake indicated that intact coleoptiles take up ions directly from the external solution. Monovalent cation (K(+) and Rb(+)) net uptake from the solution was inhibited by anoxia to the same degree for the coleoptiles of intact seedlings and for coleoptiles excised, 'aged', and supplied with exogenous glucose. Transport of endogenous K(+) from caryopses to coleoptiles was inhibited less by anoxia than net K(+) uptake from the solution, the inhibition being 55 % rather than 87 %. Despite these inhibitions, osmotic pressures of sap (pi(sap)) expressed from coleoptiles of seedlings exposed to 48 h of anoxia, with or without exogenous K(+), were 0.66 +/- 0.03 MPa; however, the contributions of K(+) to pi(sap) were 23 and 16 %, respectively. After 24 h of anoxia, the K(+) concentrations in the basal 10 mm of the coleoptiles of seedlings with or without exogenous K(+), were similar to those in aerated seedlings with exogenous K(+). In contrast, K(+) concentrations had decreased in aerated seedlings without exogenous K(+), presumably due to 'dilution' by growth; fresh weight gains of the coleoptile being 3.6- to 4.7-fold greater in aerated than in anoxic seedlings. Deposition rates of K(+) along the axes of the coleoptiles were calculated for the anoxic seedlings only, for which we assessed the elongation zone to be only the basal 4 mm. K(+) deposition in the basal 6 mm was similar for seedlings with or without exogenous K(+), at 0.6-0.87 micro mol g(-1) f. wt h(-1). Deposition rates in zones above 6 mm from the base were greater for seedlings with, than without, exogenous K(+); the latter were sometimes negative. We conclude that for the coleoptiles of rice seedlings, anoxia inhibits net K(+) uptake from the external solution to a much larger extent than K(+) translocation from the caryopses. Furthermore, K(+) concentrations in the elongation zone of the coleoptiles of anoxic seedlings were maintained to a remarkable degree, contributing to maintenance of pi(sap) in cells of these elongating tissues.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge