Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2008-Oct

Responses to changes in Ca2+ supply in two Mediterranean evergreens, Phillyrea latifolia and Pistacia lentiscus, during salinity stress and subsequent relief.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Massimiliano Tattini
Maria Laura Traversi

Anahtar kelimeler

Öz

OBJECTIVE

Changes in root-zone Ca(2+) concentration affect a plant's performance under high salinity, an issue poorly investigated for Mediterranean xerophytes, which may suffer from transient root-zone salinity stress in calcareous soils. It was hypothesized that high-Ca(2+) supply may affect differentially the response to salinity stress of species differing in their strategy of Na(+) allocation at organ level. Phillyrea latifolia and Pistacia lentiscus, which have been reported to greatly differ for Na(+) uptake and transport rates to the leaves, were studied. Methods In plants exposed to 0 mM or 200 mM NaCl and supplied with 2.0 mM or 8.0 mM Ca(2+), under 100 % solar irradiance, measurements were conducted of (a) gas exchange, PSII photochemistry and plant growth; (b) water and ionic relations; (c) the activity of superoxide dismutase and the lipid peroxidation; and (d) the concentration of individual polyphenols. Gas exchange and plant growth were also estimated during a period of relief from salinity stress. Key Results The performance of Pistacia lentiscus decreased to a significantly smaller degree than that of Phillyrea latifolia because of high salinity. Ameliorative effects of high-Ca(2+) supply were more evident in Phillyrea latifolia than in Pistacia lentiscus. High-Ca(2+) reduced steeply the Na(+) transport to the leaves in salt-treated Phillyrea latifolia, and allowed a faster recovery of gas exchange and growth rates as compared with low-Ca(2+) plants, during the period of relief from salinity. Salt-induced biochemical adjustments, mostly devoted to counter salt-induced oxidative damage, were greater in Phillyrea latifolia than in Pistacia lentiscus.

CONCLUSIONS

An increased Ca(2+) : Na(+) ratio may be of greater benefit for Phillyrea latifolia than for Pistacia lentiscus, as in the former, adaptive mechanisms to high root-zone salinity are primarily devoted to restrict the accumulation of potentially toxic ions in sensitive shoot organs.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge