Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Uchu Seibutsu Kagaku 1995-Dec

Trace gases generated in closed plant cultivation systems and their effects on plant growth.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
A Tani
M Kiyota
I Aiga

Anahtar kelimeler

Öz

Interactions between plants and trace gases, especially ethylene, were investigated from two different viewpoints; ethylene is toxic for plant growth, whereas the ethylene release rate of plants can be utilized as a plant growth indicator. When lettuce plants and shiitake mushroom mycelium were cultivated in closed chambers, ethylene concentration increased with time. Ethylene was released both from lettuce plant and from shiitake mushroom mycelium. Dioctyl phthalate (DOP) and Dibutyl phthalate (DBP) were detected, and these concentrations reached 3.7 ngL-1 for DOP and 2.4 ngL-1 for DBP 4 days after closing. Organic solvents such as xylene and toluene and organic siloxane were detected with GCMS. Visible injury was observed in lettuce plants cultivated in the chambers and it seemed to result from trace contaminants such as DOP, DBP, organic solvents, dimethylsiloxane polymer, and ethylene. In order to obtain basic data of ethylene evolution from plants, ethylene concentration in a closed chamber in which the plants were cultivated under a controlled environment (25 degrees C air temperature, 60-70% relative humidity, 250-300 micromoles m-2 s-1 photosynthetic photon flux density (PPFD)) was measured. Lettuce (Lactuca sativa L. cv. Okayama) released ethylene more than Brassica rapa var. pervidis, Brassica campestris var. communis, and Brassica campestris var. narinosa. Ethylene release rate of intact lettuce plant was highly correlated with plant growth parameters such as dry weight, leaf area and photosynthetic rate. Ethylene release rates of intact lettuce plant were affected by cultivation conditions such as ambient CO2 concentration, light intensity and light/dark period. Increase in ambient ethylene level influenced lettuce growth even at the concentration of 0.1 microliter L-1. The level of ethylene inhibited leaf expansion and slightly accelerated chlorophyll degradation. It did not affect photosynthesis and transpiration, and also little affected dry matter accumulation. Thus, ethylene release characteristics were clarified and an effect of ethylene on lettuce growth was revealed. These findings are useful for determination of a threshold level of ethylene and a capacity of ethylene removal system in CELSS. On the other hand, a possibility of plant growth diagnosis by measuring ethylene concentrations was evaluated. As a result, it became clear that the measurement of ethylene concentration in CELSS is one of the useful non-destructive measurement methods for plant growth diagnosis. Further research is needed to investigate the applicability of the method to environmental stresses other than Ni and Co in nutrient solution.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge