Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacological Reports 2020-Mar

Aloe emodin inhibits telomerase activity in breast cancer cells: transcriptional and enzymological mechanism.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Song Wang
Wen-Wen Yan
Min He
Dan Wei
Zu-Ji Long
Yi-Ming Tao

Anahtar kelimeler

Öz

Telomerase plays an essential role in cancer cell proliferation. In this study, we investigated inhibition mechanism of aloe emodin (AE) on three different types of breast cancer cell lines, MDA-MB-453, MDA-MB-231 and MCF-7.The cells were treated with different concentrations of AE. Relative length of telomere and human telomerase reverse-transcriptase (hTERT) mRNA level was analyzed by quantitative PCR (qPCR). Protein level was assayed by Western blot. Sodium bisulfite methylation sequencing was performed to assess the methylation status of gene promoter. Enzymology kinetics was applied to reveal the interaction between AE and telomerase. Ultraviolet-visible titration and fluorescence resonance energy transfer (FRET) melting experiment were carried out to study the interaction between AE and telomeric DNA.Continuous AE exposure of these cells for 48 h results in shortening of telomeres and inhibition of telomerase. The transcription of hTERT was repressed by activation of E2F1 and inactivation of c-myc proteins. Significant demethylation of CpG islands in hTERT gene promoter was observed in MDA-MB-453 and MCF-7 cells. AE competed with dNTP for occupation of the enzyme active site. AE was a telomeric G-quadruplex structure stabilizer as indicated by titration test and FRET experiments.AE was a competitive inhibitor of telomerase and a G-quadruplex structure stabilizer. AE decreased the transcription of hTERT gene in the three breast cancer cell lines via up-regulation E2F1 and down-regulation c-myc expressions. The suppressed transcription was also related to the demethylation of the gene promoter.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge