Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2019

Iodine Accumulation and Tolerance in Sweet Basil (Ocimum basilicum L.) With Green or Purple Leaves Grown in Floating System Technique.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Luca Incrocci
Giulia Carmassi
Rita Maggini
Caterina Poli
Djamshed Saidov
Chiara Tamburini
Claudia Kiferle
Pierdomenico Perata
Alberto Pardossi

Anahtar kelimeler

Öz

Iodine deficiency is a serious world-wide public health problem, as it is responsible for mental retardation and other diseases. The use of iodine-biofortified vegetables represents a strategic alternative to iodine enriched salt for people with a low sodium diet. However, at high concentrations iodine can be toxic to plants. Therefore, research on plant iodine toxicity is fundamental for the development of appropriate biofortification protocols. In this work, we compared two cultivars of sweet basil (Ocimum basilicum L.) with different iodine tolerance: "Tigullio," less tolerant, with green leaves, and "Red Rubin," more tolerant and with purple leaves. Four greenhouse hydroponic experiments were conducted in spring and in summer with different concentrations of iodine in the nutrient solution (0.1, 10, 50, 100, and 200 μM), supplied as potassium iodide (KI) or potassium iodate (KIO3). Plant growth was not affected either by 10 μM KI or by 100 μM KIO3, while KI concentrations higher than 50 μM significantly reduced leaf area, total plant dry matter and plant height. The severity of symptoms increased with time depending on the cultivar and the form of iodine applied. Growth inhibition by toxic iodine concentrations was more severe in "Tigullio" than in "Red Rubin," and KI was much more phytotoxic than KIO3. Leaf iodine concentration increased with the iodine concentration in the nutrient solution in both varieties, while the total antioxidant power was generally higher in the purple variety. In both basil cultivars, a strong negative correlation was found between the photosynthesis and the leaf iodine content, with significant differences between the regression lines for "Tigullio" and "Red Rubin." In conclusion, the greater tolerance to iodine of the "Red Rubin" variety was associated with the ability to withstand higher concentrations of iodine in leaf tissues, rather than to a reduced accumulation of this element in the leaves. The high phenolic content of "Red Rubin" could contribute to the iodine tolerance of this purple cultivar.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge