Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroinflammation 2020-Jan

White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer's disease rat model.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Nadezda Ivanova
Qingfan Liu
Cansu Agca
Yuksel Agca
Earl Noble
Shawn Whitehead
David Cechetto

Anahtar kelimeler

Öz

Metabolic syndrome, the development of which is associated with high-caloric Western diet (HCD) intake, represent a risk factor for mild cognitive impairment (MCI) and dementia including Alzheimer's disease (AD) later in life. This study aimed to investigate the effect of diet-induced metabolic disturbances on white matter neuroinflammation and cognitive function in a transgenic (TG) Fischer 344 rat carrying a human β-amyloid precursor protein (APP) gene with Swedish and Indiana mutations (APP21 TG), a model of pre-AD and MCI.TG and wildtype (WT) rats received either a HCD with 40% kJ from fat supplemented with 20% corn syrup drink or a standard diet for 12 weeks. Body weight, caloric intake, and blood pressure were measured repeatedly. End-point changes in glucose and lipid metabolism were also assessed. Open field task was used for assessment of activity; Morris water maze was used to assess spatial learning and memory. Cerebral white matter microglia and astrocytes, hippocampal neurons, and neuronal synapses were examined using immunohistochemistry.Rats maintained on the HCD developed significant obesity, visceral adiposity, dyslipidemia, and hyperinsulinemia, but did not become hypertensive. Impaired glucose tolerance was observed only in WT rats on the HCD. Total microglia number, activated OX-6+ microglia, as well as GFAP+ astrocytes located predominantly in the white matter were greater in the APP21 TG rat model in comparison to WT rats. HCD-driven metabolic perturbations further exacerbated white matter microgliosis and microglia cell activation in the APP21 TG rats and led to detectable changes in spatial reference memory in the comorbid prodromal AD and metabolic syndrome group compared to WT control rats. Neuronal density in the CA1 subregion of the hippocampus was not different between the experimental groups. Synaptic density in the CA1 and CA3 hippocampal subregions was lower in the TG rats compared to WT rats; however, there was no additional effect of the co-morbidity on this measure.These results suggest that white matter neuroinflammation might be one of the possible processes of early interaction of metabolic syndrome with MCI and pre-AD and could be one of the early brain pathologies contributing to cognitive deficits observed in mild cognitive impairment and dementia, including AD cases.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge