Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

carboxylic acid/patates

Bağlantı panoya kaydedilir
NesneKlinik denemelerPatentler
Sayfa 1 itibaren 51 Sonuçlar
Pseudomonads are often used as biocontrol agents because they display a broad range of mechanisms to control diseases. Common scab of potato, caused by Streptomyces scabies, was previously reported to be controlled by Pseudomonas fluorescens LBUM223 through phenazine-1-carboxylic acid (PCA)
Streptomyces scabies causes common scab, an economical disease affecting potato crops world-wide, for which no effective control measure exists. This pathogen produces the plant toxin thaxtomin A, which is involved in symptom development on potato tubers. A biological control approach that can limit

Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Common scab of potato is mainly caused by Streptomyces scabies. Currently, no method can efficiently control this economically important disease. We have previously determined that Pseudomonas sp. LBUM223 exhibits antagonistic properties toward S. scabies under in vitro conditions. Inhibition was
The primary hydroxyl groups in potato starch were selectively oxidized to the corresponding aldehyde and carboxylic acid functionalities by mediators like TEMPO, using laccase from fungi as catalytic oxidant and oxygen as the primary oxidant. Oxidized starch products with degree of substitution
Potato starch was esterified with carboxylic acids contained in the fermentation broth from Yarrowia lipolitica yeast production. Various acid concentrations and various roasting temperatures were used to determine effects of process conditions on ester properties, including the number of
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in many plant growth-promoting bacteria. In this study, we analysed ACC deaminase genes (acdS) of bacterial endophytes colonizing field-grown potato plants. PCR analysis revealed
1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a

Partial purification and characterization of UDPG:t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Previously, we isolated t-cinnamoyl-D-glucose as a possible intermediate in chlorogenic acid biosynthesis from sweet potato root. The enzyme which catalyzes the formation of t-cinnamoyl-D-glucose has been purified 539-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. It required

Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the

Salicylic Acid Suppresses Potato virus Y Isolate N:O-Induced Symptoms in Tobacco Plants.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
ABSTRACT The effects of salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on the systemic development of symptoms induced by a severe isolate of Potato virus Y group N:O (PVY(N:O)) in tobacco were investigated. Upon inoculation, the systemic development of symptoms in tobacco
Transgenic potato plants (SS2 and SS4) that overexpressed a chloroplastic copper/zinc superoxide dismutase lily gene were utilized as an H(2)O(2)-inducible system in order to study the role of H(2)O(2) as a signaling molecule in the biosynthesis of ethylene. SS2 and SS4 plants grown in vitro under
Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This

Complete Genome Sequence of Pseudomonas fluorescens LBUM636, a Strain with Biocontrol Capabilities against Late Blight of Potato.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Herein provided is the full-genome sequence of Pseudomonas fluorescens LBUM636. This strain is a plant growth-promoting rhizobacterium (PGPR) which produces phenazine-1-carboxylic acid, an antibiotic involved in the biocontrol of numerous plant pathogens, including late blight of potato caused by

Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate: CoA ligase genes in potato.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
4-Coumarate:CoA ligase (4CL), a key enzyme of phenylpropanoid metabolism in plants, is encoded in potato (Solanum tuberosum L.) by two structurally similar genes (St4cl-1, St4cl-2). Computer-based sequence analyses revealed similarities at the amino acid sequence level with other enzymes dependent

Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus
Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge