Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glutamine/arabidopsis

Bağlantı panoya kaydedilir
NesneKlinik denemelerPatentler
Sayfa 1 itibaren 209 Sonuçlar

ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly
Ammonium is a major nitrogen source for plants; it is assimilated into glutamine via a reaction catalyzed by glutamine synthetase (GLN). Arabidopsis expresses four cytosolic GLN genes, GLN1; 1, GLN1; 2, GLN1; 3 and GLN1; 4, in roots. However, the function and organization of these GLN1 isozymes in
The regulation by photorespiration of the transcript level corresponding to plastidic glutamine synthetase (GS-2) was investigated in the leaves of Arabidopsis thaliana (L.) Heynh.. Photorespiration was suppressed by growing the plants in an atmosphere containing 300 Pa CO2. Suppression of

Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
In higher plants, photorespiratory Gly oxidation in leaf mitochondria yields ammonium in large amounts. Mitochondrial ammonium must somehow be recovered as glutamate in chloroplasts. As the first step in that recovery, we report glutamine synthetase (GS) activity in highly purified Arabidopsis

The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Glutamine synthetase (GS) plays an important role in the assimilation of nitrogen by higher plants. We present here a molecular analysis of the GS polypeptides, mRNAs, and genes of Arabidopsis thaliana. Western blot analysis of leaf and root protein extracts revealed at least two distinct GS

Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Here, we characterize a cDNA encoding a glutamine-dependent asparagine synthetase (ASN1) from Arabidopsis thaliana and assess the effects of metabolic regulation on ASN1 mRNA levels. Sequence analysis shows that the predicted ASN1 peptide contains a purF-type glutamine-binding domain. Southern blot
We have isolated and characterized a genomic clone encoding Scots pine (Pinus sylvestris) cytosolic glutamine synthetase (GS). The clone contains the 5' end half of the gene including part of the coding region and 980 bp upstream of the translation initiation codon. The major transcription start

Stimulation of nonselective amino acid export by glutamine dumper proteins.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Phloem and xylem transport of amino acids involves two steps: export from one cell type to the apoplasm, and subsequent import into adjacent cells. High-affinity import is mediated by proton/amino acid cotransporters, while the mechanism of export remains unclear. Enhanced expression of the
Nitrogen availability has a strong influence on developmental processes in plants. We show that the time of nitrogen supply regulates the course of leaf senescence in flag leaves of Hordeum vulgare. The senescence-specific decrease in chlorophyll content and photosystem II efficiency is clearly
A novel glutamine synthetase (GS) gene DvGS1 showing highest amino acid sequence identity of 78 % with the other homologous GS proteins from green algae, was isolated and characterized from Dunaliella viridis. Phylogenetic analysis revealed that DvGS1 occupied an independent phylogenetic position
A cDNA encoding a glutamine amidotransferase and cyclase catalyzing the fifth and sixth steps of the histidine (His) biosynthetic pathway has been isolated from Arabidopsis thaliana. The N- and C-terminal domains of the primary structure deduced from a full-length Arabidopsis hisHF (At-HF) cDNA
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino
The regulation by glutamine of the leaf transcript level corresponding to the Arabidopsis thaliana (L.) Heynh. nitrate reductase gene nia2 was examined using a novel approach: we took advantage of the ability of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of A. thaliana to
Aminodeoxychorismate (ADC) synthase in plants is a bifunctional enzyme containing glutamine amidotransferase (GAT) and ADC synthase (ADCS) domains. The GAT domain releases NH(3) from glutamine and the ADCS domain uses NH(3) to aminate chorismate. This enzyme is involved in folate (vitamin B9)

A nitrogen-regulated glutamine amidotransferase (GAT1_2.1) represses shoot branching in Arabidopsis.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Shoot branching in plants is regulated by many environmental cues and by specific hormones such as strigolactone (SL). We show that the GAT1_2.1 gene (At1g15040) is repressed over 50-fold by nitrogen stress, and is also involved in branching control. At1g15040 is predicted to encode a class I
Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge