Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

hydrolase/esrar

Bağlantı panoya kaydedilir
Sayfa 1 itibaren 265 Sonuçlar

Identification of the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH) in the human placenta.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Synthetic cannabinoids, the psychoactive components of the Cannabis sativa (marijuana) plant and their endogenous counterparts, act through two G protein-coupled receptors, CB1 and CB2. The endocannabinoids are metabolized by fatty acid amide hydrolase (FAAH). Previous research has described the
This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an
Increasing evidence supports the idea of a beneficial effect of cannabinoid compounds for the treatment of multiple sclerosis (MS). However, most experimental data come from animal models of MS. We investigated the status of cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH)
Recent research in our laboratory has demonstrated that stress activates an endogenous cannabinoid mechanism that suppresses sensitivity to pain [Nature 435 (2005) 1108]. In this work, CB(1) antagonists administered systemically blocked stress-induced analgesia induced by brief, continuous

Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Cannabinoids have major effects on central nervous system function. Recent studies indicate that cannabinoid effects on the visual system have a retinal component. Immunocytochemical methods were used to localize cannabinoid CB1 receptor immunoreactivity (CB1R-IR) and an endocannabinoid (anandamide

A hydrolase enzyme inactivating endogenous ligands for cannabinoid receptors.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Cannabinoids are psychoactive components of marijuana, and bind to specific G protein-coupled receptors in the brain and other mammalian tissues. Anandamide (arachidonoylethanolamide) was discovered as an endogenous agonist for the cannabinoid receptors. Hydrolysis of anandamide to arachidonic acid
Hypothalamus-pituitary-adrenal (HPA) axis, as the key moderator in energy metabolism, plays an important role in diabetes. The endogenous cannabinoid system (eCBs) involves in neuronal functions, and simultaneously cannabinoid receptors are almost expressed in all regions of the hypothalamus

Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Arachidonylsulfonyl fluoride (3), reported here for the first time, is similar in potency to its known methyl arachidonylfluorophosphonate (2) analogue as an inhibitor of mouse brain fatty acid amide hydrolase activity (IC(50) 0.1 nM) and cannabinoid CB1 agonist [3H]CP 55,940 binding (IC(50) 304-530

Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Although the N-arachidonoyl ethanolamine (anandamide) binds to cannabinoid receptors and has been implicated in the suppression of pain, its rapid catabolism in vivo by fatty acid amide hydrolase (FAAH) has presented a challenge in investigating the physiological functions of this endogenous
The endogenous cannabinoid system has been noted for its therapeutic potential, as well as the psychoactivity of cannabinoids such as Δ9-tetrahydrocannabinol (THC). However, less is known about the psychoactivity of anandamide (AEA), an endocannabinoid ligand. Thus, the goals of this study were to

Assessment of anandamide's pharmacological effects in mice deficient of both fatty acid amide hydrolase and cannabinoid CB1 receptors.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
In the present study, we investigated whether anandamide produces its behavioral effects through a cannabinoid CB(1) receptor mechanism of action. The behavioral effects of anandamide were evaluated in mice that lacked both fatty acid amide hydrolase (FAAH) and cannabinoid CB(1) receptors (DKO) as

Cannabinoid Receptor 1 and Fatty Acid Amide Hydrolase Contribute to Operant Sensation Seeking in Mice.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain operant responding in mice.

Fatty acid amide hydrolase is lower in young cannabis users.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
We have recently shown that levels of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide, are lower in the brains of adult cannabis users (CUs) (34 ± 11 years of age), tested during early abstinence. Here, we examine replication of the lower FAAH levels in

Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
A facilitated transport process that removes the endogenous cannabinoid anandamide from extracellular spaces has been identified. Once transported into the cytoplasm, fatty acid amide hydrolase (FAAH) is responsible for metabolizing the accumulated anandamide. We propose that FAAH contributes to
The endocannabinoid anandamide (AEA) plays a crucial role in emotional control, and inhibition of its degradation by the fatty acid amide hydrolase (FAAH) has a potent antianxiety effect. The mechanism by which the magnification of AEA activity reduces anxiety is still largely undetermined. By using
Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge