Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

polygalacturonase/nekroz

Bağlantı panoya kaydedilir
NesneKlinik denemelerPatentler
14 Sonuçlar
Endo-polygalacturonase (PG) was purified from a commercial preparation of Aspergillus niger pectinase by means of carboxymethylcellulose chromatography, preparative isoelectric focusing, and gel permeation through Sephadex G-50. The enzyme was electrophoretically homogeneous and consisted of a
Tomato (Lycopersicon esculentum var. Better Boy) plants were transformed with a tomato leaf wound-inducible polygalacturonase (PG) beta-subunit gene in the antisense orientation (PGbetaS-AS) under the control of the cauliflower mosaic virus 35S promoter. The leaves of the transgenic plants exhibited
Sclerotinia sclerotiorum releases a battery of polygalacturonases (PGs) during infection, which the host plant may cope with through production of polygalacturonase inhibitor proteins (PGIPs). To study the interaction between S. sclerotiorum PGs and Brassica napus PGIPs, 5 S. sclerotiorum PGs and 4

Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization

Isolation and heterologous expression of a polygalacturonase produced by Fusarium oxysporum f. sp. cubense race 1 and 4.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A

An Exo-Polygalacturonase Pgc4 Regulates Aerial Hyphal Growth and Virulence in Fusarium oxysporum f. sp. cubense race 4

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Fusarium oxysporum f. sp. cubense race 4 (Foc4) causes Fusarium wilt that affects banana plants, and hence, the molecular mechanisms of its virulence need to be investigated. We purified an exo-polygalacturonase (exo-PG), Pgc4, from Foc4. Pgc4 has an apparent molecular weight of 50.87
Six endopolygalacturonases from Botrytis cinerea (BcPG1 to BcPG6) as well as mutated forms of BcPG1 and BcPG2 were expressed transiently in leaves of Nicotiana benthamiana using agroinfiltration. Expression of BcPG1, BcPG2, BcPG4, BcPG5, and mutant BcPG1-D203A caused symptoms, whereas BcPG3, BcPG6,

Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene

Functional characterization of a gene family encoding Polygalacturonases in Phytophthora parasitica.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Phytophthora parasitica is an oomycete plant pathogen that causes severe disease in a wide variety of plant species. In our previous study, we discovered a multigene family encoding endopolygalacturonases (endoPG) in Phytophthora parasitica. Here, we screened the genomic library of Phytophthora

The secretome of vascular wilt pathogen Verticillium albo-atrum in simulated xylem fluid.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Verticillium albo-atrum is a vascular wilt pathogen capable of infecting many important dicotyledonous plant species. Fungal isolates from hop differ in aggressiveness, causing either mild or lethal symptoms in infected plants. As in other plant pathogenic fungi, extracellular proteins, such as cell
The pathogenicity level of two French Mycosphaerella grominicola field isolates (T0414 and T0251) was evaluated on Soissons wheat cultivar using two methods: detached wheat leafs assay in a climatic chamber and wheat seedlings assay in a greenhouse. Both methods revealed that chlorosis and necrosis
Erwinia carotovora subsp. carotovora wild-type strain Ecc71 does not elicit the hypersensitive reaction (HR) in tobacco leaves. By mini-Tn5-Km and chemical mutagenesis we have isolated RsmA- mutants of Ecc71 that produce high basal levels of pectate lyases, polygalacturonase, cellulase, and

Structural biology of pectin degradation by Enterobacteriaceae.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
CONCLUSIONS Pectin is a structural polysaccharide that is integral for the stability of plant cell walls. During soft rot infection, secreted virulence factors from pectinolytic bacteria such as Erwinia spp. degrade pectin, resulting in characteristic plant cell necrosis and tissue maceration.

Cell-wall-degrading enzymes produced in vitro and in vivo by Rhizoctonia solani, the causative fungus of peanut sheath blight.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Rhizoctonia solani causes the disease peanut sheath blight, involving symptoms of maceration and necrosis of infected tissue, mainly caused by cell-wall-degrading enzymes (CWDEs). This study investigated the production of CWDEs including polygalacturonase (PG), polymethyl-galacturonase (PMG),
Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge