Vietnamese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2019-May

Capsaicin is efficiently transformed by multiple cytochrome P450s from Capsicum fruit-feeding Helicoverpa armigera.

Chỉ người dùng đã đăng ký mới có thể dịch các bài báo
Đăng nhập Đăng ký
Liên kết được lưu vào khay nhớ tạm
Kai Tian
Jiang Zhu
Mei Li
Xinghui Qiu

Từ khóa

trừu tượng

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the most abundant capsaicinoids found in hot peppers (Capsicum annum and Capsicum frutescens). It has been well documented that capsaicin plays an important role in the defense against the attack of herbivores or pathogens on Capsicum plants. A few insect herbivores such as Helicoverpa armigera and Helicoverpa assulta have been recorded to be capable of feeding on hot pepper fruits, suggesting that these insects evolve mechanisms against the toxicity of capsaicin. Although cytochrome P450-meidated detoxification is considered to be an important mechanism by which cotton bollworms cope with capsaicin, experimental evidence is lacking. In this study, we compared the capacity of four H. armigera P450s (CYP6B6, CYP9A12, CYP9A14 and CYP9A17) in capsaicin metabolism, and the capsaicin metabolites were screened and tentatively identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). HPLC analyses showed that depletion rates of capsaicin were 21.9 ± 0.1, 11.9 ± 1.5, 16.3 ± 1.4 and 14.8 ± 0.2 min-1 for CYP6B6, CYP9A12, CYP9A14 and CYP9A17 respectively. The transformation of capsaicin was inhibited by the P450 inhibitor piperonyl butoxide. A total of seven products were detected, and hydroxylation (aromatic and aliphatic) and dehydrogenation were found to be two main pathways in capsaicin metabolism. In addition, capsaicin metabolism was enzyme selective: M1 (ω-hydroxylated N-macrocyclic metabolite) and M3 (ω-hydroxylated metabolite) were uniquely detected in the CYP6B6 catalytic reaction, while M4 (ω-n hydroxylated capsaicin), M5 (diene of capsaicin) and M6 (doubly oxidized metabolite of dehydrogenated capsaicin) were only detectable in CYP9A metabolisms. A capsaicin dimer (5, 5'-dicapsaicin) was found to be the major metabolite of CYP9A reactions, but the minor product produced by CYP6B6. An overall more similar behavior in capsaicin metabolism was observed among CYP9As than between CYP6B6 and CYP9As. Our data demonstrate that CYP6B6 and CYP9As have a potent capability to transform capsaicin, and individual P450 produce unique metabolite profile. These findings help us to understand the molecular basis of capsaicin adaptation in H. armigera.

Tham gia trang
facebook của chúng tôi

Cơ sở dữ liệu đầy đủ nhất về dược liệu được hỗ trợ bởi khoa học

  • Hoạt động bằng 55 ngôn ngữ
  • Phương pháp chữa bệnh bằng thảo dược được hỗ trợ bởi khoa học
  • Nhận dạng các loại thảo mộc bằng hình ảnh
  • Bản đồ GPS tương tác - gắn thẻ các loại thảo mộc vào vị trí (sắp ra mắt)
  • Đọc các ấn phẩm khoa học liên quan đến tìm kiếm của bạn
  • Tìm kiếm dược liệu theo tác dụng của chúng
  • Sắp xếp sở thích của bạn và cập nhật các nghiên cứu tin tức, thử nghiệm lâm sàng và bằng sáng chế

Nhập một triệu chứng hoặc một căn bệnh và đọc về các loại thảo mộc có thể hữu ích, nhập một loại thảo mộc và xem các bệnh và triệu chứng mà nó được sử dụng để chống lại.
* Tất cả thông tin dựa trên nghiên cứu khoa học đã được công bố

Google Play badgeApp Store badge