Vietnamese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Journal of Sport Medicine 2011-Nov

Ice slurry ingestion increases running time in the heat.

Chỉ người dùng đã đăng ký mới có thể dịch các bài báo
Đăng nhập Đăng ký
Liên kết được lưu vào khay nhớ tạm
Jonathan Dugas

Từ khóa

trừu tượng

OBJECTIVE

To examine the effect of drinking an ice slurry (slushy) compared with cold water on prolonged submaximal exercise performed in the heat and on thermoregulatory responses.

METHODS

Crossover trial, with the 2 conditions counterbalanced and in random order. Results were adjusted for multiple comparisons by the method of Bonferroni.

METHODS

Exercise laboratory study; Edith Cowan University, Western Australia.

METHODS

Moderately active male volunteers (n = 10; mean age, 28 years) who participated in recreational sport and who had no injuries or history of heat illness were included.

METHODS

Five to 14 days before the trials, the participants were familiarized with the procedure by a progressive treadmill run to volitional exhaustion at their previously determined first ventilatory threshold running speed, in the same hot environment as the trials (34°C, 55% relative humidity). The 2 experimental trials were completed at the same time of day, 5 to 20 days apart. During the first 15 minutes, the participants rested while baseline measurements were taken. Over the next 30 minutes, they drank either a 7.5 g/kg flavored ice slurry (-1°C) or the same volume of flavored cold water (4°C) and then commenced the treadmill run. Participants were instructed to keep their normal lifestyle habits stable. In the 24 hours preceding the trials, they were asked to avoid strenuous exercise and to consume a specified amount of carbohydrate and fluid but no alcohol, caffeine, nonsteroidal anti-inflammatory drugs, or nutritional supplements. Urine and blood samples were taken, and respiratory variables, heart rate, and rectal and skin temperatures were continuously monitored. Heat storage was calculated from temperature and anthropomorphic measurements.

METHODS

The primary outcome measures were comparisons of run time to exhaustion, perceived exhaustion, heat storage capacity, and changes in rectal and skin body temperatures during the 2 trials.

RESULTS

All 10 participants took longer to fatigue (range, 2.4-14.2 minutes) after ice slurry (mean, 50.2 minutes; SD, 8.5 minutes) than after cold water (mean, 40.7 minutes; SD, 7.2 minutes) ingestion (relative mean increase, 19%; SD, 6%; P = 0.001). Mean rectal temperature during the rest period did not differ between conditions but was 0.32°C lower after drinking the ice slurry than after cold water ingestion before the start of exercise (P = 0.001). During the treadmill runs, rectal temperature rose for both conditions but remained lower for the ice slurry condition for the first 30 minutes of exercise (P = 0.001). After exercise to exhaustion, mean rectal temperature was higher for the ice slurry condition than for the cold water condition (39.36°; SD, 0.41° vs 39.05°; SD, 0.37°; P = 0.001). Mean skin temperature showed a similar pattern to rectal temperature except that the conditions did not differ during or after exercise. During the prerun period, heat storage was lower after ice slurry than after cold water ingestion (-18.28 W/m vs -7.84 W/m; P = 0.001), but during exercise, heat storage was greater after ice slurry than after cold water ingestion (100.10 W/m vs 78.93 W/m; P = 0.005), although the mean rates of heat storage were similar between conditions. During exercise, participant ratings of thermal sensation and perceived exertion were lower after ice slurry than after cold water ingestion, except at exhaustion, when the ratings were similar.

CONCLUSIONS

Ice slurry (slushy) compared with cold water ingestion prolonged running time to exhaustion in hot and humid conditions, reduced rectal temperature during exercise, and allowed rectal temperature to rise higher before the runner reached exhaustion.

Tham gia trang
facebook của chúng tôi

Cơ sở dữ liệu đầy đủ nhất về dược liệu được hỗ trợ bởi khoa học

  • Hoạt động bằng 55 ngôn ngữ
  • Phương pháp chữa bệnh bằng thảo dược được hỗ trợ bởi khoa học
  • Nhận dạng các loại thảo mộc bằng hình ảnh
  • Bản đồ GPS tương tác - gắn thẻ các loại thảo mộc vào vị trí (sắp ra mắt)
  • Đọc các ấn phẩm khoa học liên quan đến tìm kiếm của bạn
  • Tìm kiếm dược liệu theo tác dụng của chúng
  • Sắp xếp sở thích của bạn và cập nhật các nghiên cứu tin tức, thử nghiệm lâm sàng và bằng sáng chế

Nhập một triệu chứng hoặc một căn bệnh và đọc về các loại thảo mộc có thể hữu ích, nhập một loại thảo mộc và xem các bệnh và triệu chứng mà nó được sử dụng để chống lại.
* Tất cả thông tin dựa trên nghiên cứu khoa học đã được công bố

Google Play badgeApp Store badge