Vietnamese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drugs in R and D 2004

Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes.

Chỉ người dùng đã đăng ký mới có thể dịch các bài báo
Đăng nhập Đăng ký
Liên kết được lưu vào khay nhớ tạm
Mark A Babizhayev
Anatoly I Deyev
Valentina N Yermakova
Igor V Brikman
Johan Bours

Từ khóa

trừu tượng

Cataract formation represents a serious problem in the elderly, with approximately 25% of the population aged >65 years and about 50% aged >80 years experiencing a serious loss of vision as a result of this condition. Not only do cataracts diminish quality of life, they also impose a severe strain on global healthcare budgets. In the US, 43% of all visits to ophthalmologists by Medicare patients are associated with cataract. Surgery represents the standard treatment of this condition, and 1.35 million cataract operations are performed annually in the US, costing 3.5 billion US dollars (year of costing, 1998). Unfortunately, the costs of surgical treatment and the fact that the number of patients exceeds surgical capacities result in many patients being blinded by cataracts worldwide. This situation is particularly serious in developing countries; worldwide 17 million people are blind because of cataract formation, and the problem will grow in parallel with aging of the population. In any event, surgical removal of cataracts may not represent the optimal solution. Although generally recognised as being one of the safest operations, there is a significant complication rate associated with this surgical procedure. Opacification of the posterior lens capsule occurs in 30-50% of patients within 2 years of cataract removal and requires laser treatment, a further 0.8% experience retinal detachments, approximately 1% are rehospitalised for corneal problems, and about 0.1% develop endophthalmitis. Although the risks are small, the large number of procedures performed means that 26,000 individuals develop serious complications as a result of cataract surgery annually in the US alone. Thus, risk and cost factors drive the investigation of pharmaceutical approaches to the maintenance of lens transparency. The role of free radical-induced lipid oxidation in the development of cataracts has been identified. Initial stages of cataract are characterised by the accumulation of primary (diene conjugates, cetodienes) lipid peroxidation (LPO) products, while in later stages there is a prevalence of LPO fluorescent end-products. A reliable increase in oxiproducts of fatty acyl content of lenticular lipids was shown by a direct gas chromatography technique producing fatty acid fluorine-substituted derivatives. The lens opacity degree correlates with the level of the LPO fluorescent end-product accumulation in its tissue, accompanied by sulfhydryl group oxidation of lens proteins due to a decrease of reduced glutathione concentration in the lens. The injection of LPO products into the vitreous has been shown to induce cataract. It is concluded that peroxide damage of the lens fibre membranes may be the initial cause of cataract development. N-acetylcarnosine (as the ophthalmic drug Can-C), has been found to be suitable for the nonsurgical prevention and treatment of age-related cataracts. This molecule protects the crystalline lens from oxidative stress-induced damage, and in a recent clinical trial it was shown to produce an effective, safe and long-term improvement in sight. When administered topically to the eye in the form of Can-C, N-acetylcarnosine functions as a time-release prodrug form of L-carnosine resistant to hydrolysis with carnosinase. N-acetylcarnosine has potential as an in vivo universal antioxidant because of its ability to protect against oxidative stress in the lipid phase of biological cellular membranes and in the aqueous environment by a gradual intraocular turnover into L-carnosine. In our study the clinical effects of a topical solution of N-acetylcarnosine (Can-C) on lens opacities were examined in patients with cataracts and in canines with age-related cataracts. These data showed that N-acetylcarnosine is effective in the management of age-related cataract reversal and prevention both in human and in canine eyes.

Tham gia trang
facebook của chúng tôi

Cơ sở dữ liệu đầy đủ nhất về dược liệu được hỗ trợ bởi khoa học

  • Hoạt động bằng 55 ngôn ngữ
  • Phương pháp chữa bệnh bằng thảo dược được hỗ trợ bởi khoa học
  • Nhận dạng các loại thảo mộc bằng hình ảnh
  • Bản đồ GPS tương tác - gắn thẻ các loại thảo mộc vào vị trí (sắp ra mắt)
  • Đọc các ấn phẩm khoa học liên quan đến tìm kiếm của bạn
  • Tìm kiếm dược liệu theo tác dụng của chúng
  • Sắp xếp sở thích của bạn và cập nhật các nghiên cứu tin tức, thử nghiệm lâm sàng và bằng sáng chế

Nhập một triệu chứng hoặc một căn bệnh và đọc về các loại thảo mộc có thể hữu ích, nhập một loại thảo mộc và xem các bệnh và triệu chứng mà nó được sử dụng để chống lại.
* Tất cả thông tin dựa trên nghiên cứu khoa học đã được công bố

Google Play badgeApp Store badge