中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 1996-May

A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M Nassal
A Rieger

關鍵詞

抽象

Human hepatitis B virus (HBV) is a small DNA virus that replicates inside the viral nucleocapsid by reverse transcription of an RNA intermediate. Encapsidation of this RNA pregenome is mediated by the interaction of the viral replication enzyme P with the structured 5'-proximal RNA element epsilon; replication was thought to start in the 3'-proximal direct repeat DR1*. However, recent data obtained with the duck hepatitis B virus indicated a novel, discontinuous mechanism of negative-strand DNA synthesis. Here we demonstrate, using DNA transfection of complete HBV genomes, that the 3'-half of a 6-nucleotide bulge in HBV epsilon whose primary sequence is not important for encapsidation serves as template for a short DNA primer that is subsequently transferred to DR1*. Apparently, P protein copies any template sequence that does not interfere with epsilon structure; however, altered primary sequences can induce polymerase stuttering, resulting in extended primers containing more than one equivalent of the template sequence. The importance of the bulged structure is emphasized by the dependence of primer length on bulge size. Transfer specificity is in part controlled by sequence complementarity. The strategy of using the 5' encapsidation signal as the origin of replication for discontinuous negative-strand DNA synthesis, common to mammalian and avian hepadnaviruses, suggests the evolutionary origin of hepatitis B viruses to lie between that of modern retroviruses and primitive retroelements like the Mauriceville retroplasmid.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge