中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2002-Jun

A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Sean D McAllister
Qing Tao
Judy Barnett-Norris
Kurt Buehner
Dow P Hurst
Frank Guarnieri
Patricia H Reggio
Katharine W Nowell Harmon
Guy A Cabral
Mary E Abood

關鍵詞

抽象

Previous mutation and modeling studies have identified an aromatic cluster in the transmembrane helix (TMH) 3-4-5 region as important for ligand binding at the CB(1) and CB(2) cannabinoid receptors. Through novel mixed mode Monte Carlo/Stochastic Dynamics (MC/SD) calculations, we tested the importance of aromaticity at position 5.39(275) in CB(1). MC/SD calculations were performed on wild-type (WT) CB(1) and two mutants, Y5.39(275)F and Y5.39(275)I. Results indicated that while the CB(1) Y5.39(275)F mutant is very similar to WT, the Y5.39(275)I mutant shows pronounced topology changes in the TMH 3-4-5 region. Site-directed mutagenesis studies of tyrosine 5.39 to phenylalanine (Y-->F) or isoleucine (Y-->I) in both CB(1) and CB(2) were performed to determine the functional role of this amino acid in each receptor subtype. HEK 293 cells transfected with mutant receptor cDNAs were evaluated in radioligand binding and cyclic AMP assays. The CB(1) mutant and WT receptors were also co-expressed with G-protein-coupled inwardly rectifying channels (GIRK1 and GIRK4) in Xenopus oocytes to assess functional coupling. The Y-->F mutation resulted in cannnabinoid receptors with subtle differences in WT binding and signal transduction. In contrast, the Y-->I mutations produced receptors that could not produce signal transduction or bind to multiple cannabinoid compounds. However, immunofluorescence data indicate that the Y-->I mutation was compartmentalized and expressed at a level similar to that of the WT cannabinoid receptor. These results underscore the importance of aromaticity at position CB(1) 5.39(275) and CB(2) 5.39(191) for ligand recognition in the cannabinoid receptors.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge