中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2007-Sep

Agonist selective modulation of tyrosine hydroxylase expression by cannabinoid ligands in a murine neuroblastoma cell line.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Barbara Bosier
Sébastien Tilleux
Mustapha Najimi
Didier M Lambert
Emmanuel Hermans

關鍵詞

抽象

Functional interactions between catecholamines and cannabinoid transmission systems could explain the influence of Delta(9)-tetrahydrocannabinol on several central activities. Hence, the presence of cannabinoid CB(1) receptors in tyrosine hydroxylase (TH) containing cells has been suggested, providing clue for a direct control of catecholamines synthesis. In the present study, we evidenced the constitutive expression of functional cannabinoid CB(1) receptors in N1E-115 neuroblastoma and reported on the use of this model to examine the influence of diverse cannabinoid ligands on TH expression. Exposure of the cells to the high-affinity agonist HU 210 (5 h) resulted in a significant decrease in TH content (pEC(50): 6.40). In contrast, no change was observed after a similar treatment with the structurally unrelated agonist CP 55,940. Besides, the use of a luciferase reporter assay revealed that these two agonists showed opposite influences on TH gene promoter activity. Thus, in cells expressing pTH-luc constructs, inhibition and induction of luciferase activity were respectively observed with HU 210 (pEC(50): 8.95) and CP 55,940 (pEC(50): 9.09). Pharmacological characterisation revealed that these reciprocal responses were both related to the specific activation of cannabinoid CB(1) receptor, suggesting an agonist-dependent modulation of distinct signalling pathways. While these data points out the possible pharmacological manipulation of TH expression by cannabinoid ligands, such approach should take into account the existence of agonist selective trafficking of cannabinoid CB(1) receptor signalling.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge