中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2008-Apr

Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Li-Chen Wu
Nien-Chu Fan
Ming-Hui Lin
Inn-Ray Chu
Shu-Jung Huang
Ching-Yuan Hu
Shang-Yu Han

關鍵詞

抽象

Spilanthes acmella (Paracress), a common spice, has been administered as a traditional folk medicine for years to cure toothaches, stammering, and stomatitis. Previous studies have demonstrated its diuretic, antibacterial, and anti-inflammatory activities. However, the active compounds contributing to the anti-inflammatory effect have seldom been addressed. This study isolates the active compound, spilanthol, by a bioactivity-guided approach and indicates significant anti-inflammatory activity on lipopolysaccharide-activated murine macrophage model, RAW 264.7. The anti-inflammatory mechanism of paracress is also investigated. Extracts of S. acmella are obtained by extraction with 85% ethanol, followed by liquid partition against hexane, chloroform, ethyl acetate, and butanol. The ethyl acetate extract exhibits a stronger free radical scavenging capacity than other fractions do, as determined by DPPH and ABTS radical scavenging assays. The chloroform extract significantly inhibits nitric oxide production ( p < 0.01) and is selected for further fractionation to yield the active compound, spilanthol. The diminished levels of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) mRNA and protein expression support the postulation that spilanthol inhibits proinflammatory mediator production at the transcriptional and translational levels. Additionally, the LPS-stimulated IL-1beta, IL-6, and TNF-alpha productions are dose-dependently reduced by spilanthol. The LPS-induced phosphorylation of cytoplasmic inhibitor-kappaB and the nuclear NF-kappaB DNA binding activity are both restrained by spilanthol. Results of this study suggest that spilanthol, isolated from S. acmella, attenuates the LPS-induced inflammatory responses in murine RAW 264.7 macrophages partly due to the inactivation of NF-kappaB, which negatively regulates the production of proinflammatory mediators.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge