中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2019-Sep

Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Andrijana Macan
Anja Harej
Ines Cazin
Marko Klobučar
Višnja Stepanić
Krešimir Pavelić
Sandra Pavelić
Dominique Schols
Robert Snoeck
Graciela Andrei

關鍵詞

抽象

Two series of 6-(1,2,3-triazolyl)-2,3-dibenzyl-l-ascorbic acid derivatives with the hydroxyethylene (8a-8u) and ethylidene linkers (10c-10p) were synthesized and evaluated for their antiproliferative activity against seven malignant tumor cell lines and antiviral activity against a broad range of viruses. Conformationally unrestricted spacer between the lactone and 1,2,3-triazole units in 8a-8u series had a profound effect on antitumor activity. Besides, the introduction of a long side chain at C-4 of 1,2,3-triazole that led to the synthesis of decyl-substituted 2,3-dibenzyl-l-ascorbic acid 8m accounted for a selective and potent antiproliferative activity on breast cancer MCF-7 cells cells in the nM range. Further analysis showed that compound 8m strongly enhanced expression of hypoxia inducible transcription factor 1 α (HIF-1α) and to some extent decreased expression of nitric oxide synthase 2 (NOS2) suggesting its role in regulating HIF-1α signalling pathway. The p-methoxyphenyl-substituted derivative 10g displayed specific anti-cytomegalovirus (CMV) potential, whereas aliphatic-substituted derivatives 8l and 8m had the most potent, yet relatively non-specific, anti-varicella-zoster (VZV) activity.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge