中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Neuroscience 2010-Apr

Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
A B Ali
M Todorova

關鍵詞

抽象

The influence of local circuit interneurons is thought to play an important role in adjusting synaptic strength via endogenous cannabinoid type 1 (CB1) receptors. Using paired whole-cell recordings, combined with double immunofluorescence and biocytin labelling in acute slices of rat CA1 at postnatal day 18-23, we investigated the properties of Cholecystokinin (CCK)-positive stratum radiatum local circuit interneuron connections that utilised CB1 receptors. Three types of synaptic connections were studied, lacunosum-moleculare-radiatum perforant path-associated (LM-R PPA) to Shaffer collateral-associated (SCA) interneurons, SCA-SCA interneurons and SCA-pyramidal cells. These three synapses were differentially under tonic reduction of inhibition that was blocked by the CB1 receptor inverse agonist AM-251 (10 microM), which enhanced IPSPs. The strength of tonic reduction of inhibition was correlated with asynchronous release which was apparent at connections among interneurons. AM-251 increased the ratio of synchronous to asynchronous release (synchronicity ratio), while the CB receptor agonist anandamide (14 microM) decreased the synchronicity ratio. Fast and slow calcium chelators (BAPTA-AM and EGTA-AM) also increased the synchronicity ratio, accelerated inhibitory time courses and reduced IPSP amplitudes. These data suggest that CB1 receptors at connections among interneuron synapses play a role in tonic suppression of inhibition and govern the asynchronous release of GABA, modulating the time windows of inhibition. Effects of calcium chelators suggest that asynchronous release is a result of a long-lasting presynaptic calcium transients and/or a large distance between calcium source and sensor of exocytosis. These properties of specialised inhibitory neurons may have important modulatory roles in controlling spike timing among local circuit interneurons.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge