中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Habitation (Elmsford, N.Y.) 2003

Development of a pilot system for converting sweet potato starch into glucose syrup.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Valerian C K Silayo
John Y Lu
Heshmat A Aglan

關鍵詞

抽象

Sweet potato has been chosen as one of NASA's crops to support human beings in future space missions. One of the possible uses is to make syrup that can be used as a general sweetener. In this work a simple engineering system for converting sweet potato starch into glucose syrup was studied on a laboratory scale. The system comprises the following main units: a blender, continuous stirred tank reactor (CSTR), centrifugal and vacuum filters, deionization column and vacuum evaporator. The system was tested by carrying out conversion processes from fresh sweet potato roots. The roots were pealed, sliced, homogenized, heated and hydrolyzed by diastase of malt and Dextrozyme C (Novo Nordisk BioChem, North America, Inc.) enzymes in the CSTR. After hydrolysis the slurry was filtered, de-ionized and concentrated to get glucose syrup. The performance of the system was evaluated based on the quality of the conversion. The main factor was the level of reducing sugars except for the deionization where ash content and color were the main factors. Through careful control of the system units, good heating performance in the CSTR was obtained and the hydrolysis process attained sufficient conversion. The filtration process that incorporated the centrifuge was faster than when it was by-passed to the vacuum filter but losses in sugars were higher. Deionization removed more than 90% of the ash and reduced pigmentation, with probable insignificant losses in sugars during the deionization process. Recovery levels when the centrifuge was used and when it was by-passed could reach about 65% and 78%, respectively. These correspond to reducing sugar concentration of 259 and 310 mg/ml in 150-ml syrups from 300 g of sweet potatoes in each process. However, from concentration trials, syrups with volumes of 100 and 70 ml with the respective dextrose equivalence of 281 and 213 mg/ml were obtained. The syrups obtained were brownish in color and the process that employed centrifugal filtration gave a product with color that resembled the original color of the sweet potatoes. Further work is required to improve the overall system performance.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge