中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuropharmacology 2012-Jun

Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Barbara Bosier
Giulio G Muccioli
Birgit Mertens
Sophie Sarre
Yvette Michotte
Didier M Lambert
Emmanuel Hermans

關鍵詞

抽象

It is generally assumed that cannabinoids induce transient modulations of dopamine transmission through indirect regulation of its release. However, we previously described a direct cannabinoid-mediated control of tyrosine hydroxylase (TH) expression, in vitro. We herein report on the influence of cannabinoid agonists on the expression of this key enzyme in catecholamine synthesis as well as on the modification of dopamine content in adult rats. As expected for cannabinoid agonists, the exposure to either Δ(9)-THC, HU 210 or CP 55,940 induced both catalepsy and hypolocomotion. Supporting a possible long-lasting control on dopaminergic activity, we noticed a significant HU 210-mediated increase in TH expression in the striatum that was concomitant with an increase in striatal dopamine content. Surprisingly, while a similar trend was reported with Δ(9)-THC, CP 55,940 completely failed to modulate TH expression or dopamine content. Nevertheless, the access of CP 55,940 to brain structures was validated by determinations of drug concentrations in the tissue and by ex vivo binding experiments. Furthermore, confirming the central activity of CP 55,940, the analysis of dopamine metabolites revealed a reduction in striatal DOPAC concentrations. Consistent with the involvement of the CB(1) cannabinoid receptor in these different responses, both HU 210- and CP 55,940-mediated effects were prevented by SR 141716A. Therefore, the present data suggest that both HU 210 and CP 55,940 cause a delayed/persistent regulation of the dopamine neurotransmission system. Nevertheless, these commonly used cannabinoid agonists endowed with similar pharmacodynamic properties clearly triggered distinct biochemical responses highlighting the existence of functional selectivity in vivo.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge