中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2016-Sep

Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Li-Jun Huang
Ning Li
Corinna Thurow
Markus Wirtz
Rüdiger Hell
Christiane Gatz

關鍵詞

抽象

Glutaredoxins (GRXs) are small proteins which bind glutathione to either reduce disulfide bonds or to coordinate iron sulfur clusters. Whereas these well-established functions are associated with ubiquitously occurring GRXs that encode variants of a CPYC or a CGFS motif in the active center, land plants also possess CCxC/S-type GRXs (named ROXYs) for which the biochemical functions are yet unknown. ROXYs physically and genetically interact with bZIP transcription factors of the TGA family. In Arabidopsis, ectopically expressed ROXY19 (originally named GRX480 or GRXC9) negatively regulates expression of jasmonic acid/ethylene-induced defense genes through an unknown mechanism that requires at least one of the redundant transcription factors TGA2, TGA5 or TGA6.

Ectopically expressed ROXY19 interferes with the activation of TGA-dependent detoxification genes. Similar to the tga2 tga5 tga6 mutant, 35S:ROXY19 plants are more susceptible to the harmful chemical TIBA (2,3,5-triiodobenzoic acid). The repressive function of ROXY19 depends on the integrity of the active site, which can be either CCMC or CPYC but not SSMS. Ectopic expression of the related GRX ROXY18/GRXS13 also led to increased susceptibility to TIBA, indicating potential functional redundancy of members of the ROXY gene family. This redundancy might explain why roxy19 knock-out plants did not show a phenotype with respect to the regulation of the TIBA-induced detoxification program. Complementation of the tga2 tga5 tga6 mutant with either TGA5 or TGA5C186S, in which the single potential target-site of ROXY19 had been eliminated, did not reveal any evidence for a critical redox modification that might be important for controlling the detoxification program.

ROXY19 and related proteins of the ROXY gene family can function as negative regulators of TGA-dependent promoters controlling detoxification genes.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge