中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Biochemistry and Biotechnology 2013-Oct

Effect of enhanced UV-B radiation and low-energy N⁺ ion beam radiation on the response of photosynthesis, antioxidant enzymes, and lipid peroxidation in rice (Oryza sativa) seedlings.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Linyu Li
Qunce Huang
Shuyin Zhang
Shuaipeng Zhao

關鍵詞

抽象

To understand the effect of enhanced UV-B radiation and low-energy N(+) ion beam radiation on the response of photosynthesis, antioxidant enzymes, and lipid peroxidation in rice seedlings, Oryza sativa was exposed to three different doses of low-energy N(+) ion beam and enhanced UV-B alone and in combination. Enhanced UV-B caused a marked decline in some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) and photosynthetic pigments, whereas it induced an increase in hydrogen peroxide (H2O2) accumulation, the rate of superoxide radical production, and the content of malondialdehyde (MDA). Enhanced UV-B also induced an increase in the activity of antioxidant enzymes (superoxide dismutase [SOD], peroxidase (POD), and catalase [CAT]) and some nonenzymatic antioxidants such as proline. Under the combined treatment of enhanced UV-B and low-energy N(+) ion beam at the dose of 3.0 × 10(17) N(+) cm(-2), the activity of antioxidant compounds (SOD, POD, CAT, proline, and glutathione), photosynthetic pigments, and some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) increased significantly; however, the MDA content, H2O2 accumulation, and rate of superoxide radical production showed a remarkable decrease compared with the enhanced UV-B treatment alone. These results implied that the appropriate dose of low-energy N(+) ion beam treatment may alleviate the damage caused by the enhanced UV-B radiation on rice.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge