中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurorehabilitation and Neural Repair 2001

Higher cortical function deficits after stroke: an analysis of 1,000 patients from a dedicated cognitive stroke registry.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M Hoffmann

關鍵詞

抽象

OBJECTIVE

Despite spectacular success of animal model neuroprotective therapy in stroke, these agents have been uniformly unsuccessful in humans. One possible explanation is the crudity of cerebral measurement by insensitive of stroke scales comprising scant or absent higher cortical-function parameters and the heterogeneity of stroke syndromes and etiology. We sought to determine the frequency and extent of cognitive disorders after stroke and their relation to stroke risk factors, syndromes, lesion site, and etiology.

METHODS

We used hospital-based consecutive stroke cases. A tiered, hierarchic, cerebrovascular investigative protocol and a battery of predefined, validated bedside higher cortical function deficit (HCFD) tests with comparison to neuropsychological. Quantification according to the World Health Organization levels of disease model was achieved by a clinical neurologic deficit scale, etiologic scale, and disability scale.

RESULTS

Stroke deficit, disability and etiology: In patients evaluated (n = 1,000), the admission Canadian Neurological Scale deficit grading was mild, 11.5-9.5 (n = 696); moderate, 9.5-5.5 (n = 204); and severe, 5.0-0 (n = 86); with correlation to Rankin scale of independent (n = 467), mild disability (n = 345) and severe disability (n = 174) with moderate agreement (kappa = 0.54) between the two measurements. The etiologic subtypes included large-vessel atherothrombosis (n = 264), small-vessel atherothrombosis (n = 262), cardioembolic (n = 122), other (dissection, vasculitis, prothrombotic states; n = 253), and unknown (n = 99). Cognitive Data: 1. One or more higher cortical function abnormalities was detected in 607 (63.5%) of 955 nondrowsy patients. The most numerous categories were aphasias (25.2%), apraxias (14.5%), amnesias (11.6%), and frontal network syndromes (9.2%), with the other categories less frequent (3%). Cognitive impairment occurred without elementary neurologic deficits (motor, sensory, or visual impairment) in 137 (22.5%) of 608. The cardioembolic, other, and unknown stroke mechanistic groups differed significantly from the other groups in terms of HCFD (p = 0.01) frequency. HCFD did not differ between younger (younger than 49 years) and older patients (p = 0.194). 3. Univariate and multivariate analyses of risk factors and likelihood of developing an HCFD revealed increasing age, black race, being overweight, and recent infection to be independent variables (p = 0.05). 4. In 76 patients, neuropsychological testing was performed and comparison with the HCFD test revealed a sensitivity of 80.2% (CI, 72-88%) and specificity of 100%.

CONCLUSIONS

1. Cognitive impairment is present in the majority of all types of stroke. 2. Cognitive impairment may be the sole presentation of stroke, unaccompanied by long-tract signs. 3. Stroke etiologic subtype differed significantly among the subgroups, but in comparison of young versus older patients, no significant differences in HCFD frequency were recorded. 4. Risk factors for developing cognitive impairment in the indigenous stroke population included increasing age, black race, overweight body habitus, and recent infection.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge