中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2017-Feb

Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Zhongxin Guo
Jinfeng Lu
Xianbing Wang
Binhui Zhan
Wanxiang Li
Shou-Wei Ding

關鍵詞

抽象

Dicer-mediated processing of virus-specific dsRNA into short interfering RNAs (siRNAs) in plants and animals initiates a specific antiviral defense by RNA interference (RNAi). In this study, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in Arabidopsis thaliana Using whole-genome sequencing and a computational pipeline, we identified aminophospholipid transporting ATPase 2 (ALA2) and the related ALA1 in the type IV subfamily of P-type ATPases as key components of antiviral RNAi. ALA1 and ALA2 are flippases, which are transmembrane lipid transporter proteins that transport phospholipids across cellular membranes. We found that the ala1/ala2 single- and double-mutant plants exhibited enhanced disease susceptibility to cucumber mosaic virus when the virus-encoded function to suppress RNAi was disrupted. Notably, the antiviral activity of both ALA1 and ALA2 was abolished by a single amino acid substitution known to inactivate the flippase activity. Genetic analysis revealed that ALA1 and ALA2 acted to enhance the amplification of the viral siRNAs by RNA-dependent RNA polymerase (RdRP) 1 (RDR1) and RDR6 and of the endogenous virus-activated siRNAs by RDR1. RNA virus replication by plant viral RdRPs occurs inside vesicle-like membrane invaginations induced by the recruitment of the viral RdRP and host factors to subcellular membrane microdomains enriched with specific phospholipids. Our results suggest that the phospholipid transporter activity of ALA1/ALA2 may be necessary for the formation of similar invaginations for the synthesis of dsRNA precursors of highly abundant viral and host siRNAs by the cellular RdRPs.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge