中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Calcified Tissue International 1992-Jun

Mineralization and bone formation on microcarrier beads with isolated rat calvaria cell population.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
J M Sautier
J R Nefussi
N Forest

關鍵詞

抽象

Using enzymatically isolated rat bone cells in the presence of cytodex microcarrier beads, osteoblastic cell differentiation and bone nodule formation were studied at the optical and electron microscopic level. Cytochemical method showed an intense alkaline phosphatase activity mainly around the microcarriers where the cells have formed multilayers on day 4 of cultures. On day 7 of experiment cultures, Von Kossa method stained positively only the cytodex microcarriers. During the following days, bone nodule formation was closely associated with cytodex microcarriers. In contrast, in control cultures with negatively charged glass beads, cells failed to pile up around the glass beads, and bone nodule formation occurred randomly in the culture dishes with 24 hour delay. Light microscopy observations of experiment cultures revealed the formation of nodular structures, with active osteoblastic cells forming a mineralized matrix in which osteocytes were present. Transmission electron microscopy revealed first, a mineralization process of the surface of the cytodex microcarriers which appeared like a granular electron-dense, collagen-free layer followed by the deposit of a collagenous matrix. These results indicated that cytodex microcarriers provided an excellent matrix for bone cell differentiation and mineralization.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge