中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Physiologica 2016-Oct

Pro-inflammatory cytokines, IL-1β and TNF-α, produce persistent compromise in tonic immobility defensive behaviour in endotoxemia guinea-pigs.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
A B Ribeiro
P C G de Barcellos-Filho
C R Franci
L Menescal-de-Oliveira
R S Saia

關鍵詞

抽象

Sepsis has been associated with acute behavioural changes in humans and rodents, which consists of a motivational state and an adaptive response that improve survival. However, the involvement of peripheral cytokines synthesized during systemic inflammation as modulators of the tonic immobility (TI) defensive behaviour remains a literature gap. Our purposes were to characterize the TI defensive behaviour in endotoxemia guinea-pigs at acute phase and after recovery from the initial inflammatory challenge. Furthermore, we investigated whether peri-aqueductal grey matter (PAG) exists as a brain structure related to this behaviour and also pro-inflammatory cytokines, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, act at this mesencephalic nucleus.

Endotoxemia was induced by lipopolysaccharide (LPS) administration in guinea-pigs. The parameters evaluated included TI defensive behaviour, survival, cytokines production, as well as neuronal activation and apoptosis in the PAG.

Endotoxemia guinea-pigs exhibited a reduction in the duration of TI episodes, starting at 2 h after LPS administration and persisting throughout the experimental period evaluated over 7 days. Moreover, endotoxemia increased the c-FOS immunoreactivity of neurones in the ventrolateral PAG (vlPAG), as well as the caspase-3 expression. The LPS microinjection into vlPAG reproduces the same compromise, that is a decrease in the duration of TI defensive behaviour, observed after the peripheral administration. The immunoneutralization against IL-1β and TNF-α into vlPAG reverts all the effects produced by peripheral LPS administration.

Our findings confirm that vlPAG is an important brain structure involved in the behavioural alterations induced by endotoxemia, possibly changing the neuronal activity caused by pro-inflammatory cytokines produced peripherally.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge