中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virology 1999-Aug

Restoration of a stem-loop structure required for potato virus X RNA accumulation indicates selection for a mismatch and a GNRA tetraloop.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
E D Miller
K H Kim
C Hemenway

關鍵詞

抽象

The 5' region of potato virus X (PVX) RNA contains a stem-loop structure, stem-loop 1 (SL1), that is required for efficient plus-strand RNA accumulation. To determine how changes to individual elements in SL1 are accommodated by the virus, we inoculated PVX transcripts containing modifications in the terminal tetraloop (TL), stem C (SC), and stem D (SD) regions onto Nicotiana benthamiana plants and analyzed progeny RNAs over a series of passages. Several progeny RNAs isolated from plants inoculated with the TL mutants containing changes to the first nucleotide of the GAAA motif or deletion of the entire TL sequence were found to contain multiple A insertions within the terminal loop region. The wild-type TL motif, GAAA, was recovered for all TL mutants by the second passage, suggesting that the sequence and potential structure of this element are crucial for PVX infection. Revertant RNAs isolated from plants inoculated with mutants in SD and the central region of SC indicated that increased stem length is tolerated. Restoration of SD length to the 4 bp typical of the wild-type PVX RNA was accompanied by A insertion into loop C. Mutants with a conversion of the C55-C78 mismatch to a G-C pair, relocation of this mismatch within the central region of SC, or deletion of C55-C78 were unable to infect protoplasts and plants. In contrast, the mutant with a conversion of the C55-C78 mismatch to an A-C mismatch, which exhibited low levels of PVX plus-strand RNA in protoplasts, was able to infect plants and quickly reverted to the wild-type C-C mismatch. These data indicate that important sequence and secondary structural elements within SL1 are required for efficient viral infection and that multiple A insertions within the TL and loop C regions, potentially by polymerase stuttering, accompany restoration of SL1 structure.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge