中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2011-Jul

Study on arsenate tolerant and sensitive cultivars of Zea mays L.: differential detoxification mechanism and effect on nutrients status.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Shekhar Mallick
Geetgovind Sinam
Sarita Sinha

關鍵詞

抽象

The study identifies sensitive and tolerant cultivars of Zea mays L. (cv. Azad kamal (AK) and Azad uttam (AU)) towards As(V) induced stress, based upon growth biochemical parameters and metal(loid) levels in a sand culture. As(V) (μgg⁻¹ dw) accumulation was lower in cv. AK (31 ± 1 and 107 ± 30) than cv. AU (34.5 ± 3.3 and 132.6) in leaves and roots, respectively, which correlated with lower levels of malondialdehyde and H₂O₂. No definite trend of Mn, Cu, Zn, Fe, Ca, K and Na accumulation signifies that As(V) has little influence on their uptake. Total chlorophyll and protein levels increased in cv. AK and decreased in cv. AU at 7d. Higher levels of SOD and GR in cv. AK and conversely higher levels of APX, GPX and CAT in cv. AU could be a possible differential detoxification mechanism between the cultivars. The results indicate that cv. AK seems to be arsenate tolerant than cv. AU. We assure that the undertaken study does not involve humans or experimental animals and were conducted in accordance with national and institutional guidelines for the protection of human subjects and animal welfare.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge