中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Leukocyte Biology 2015-Oct

TLR2, but not TLR4, plays a predominant role in the immune responses to cholera vaccines.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jae Seung Yang
Hye Jin Kim
Seok-Seong Kang
Kyoung Whun Kim
Dong Wook Kim
Cheol-Heui Yun
Soon-Jung Park
Ho Seong Seo
B Brett Finlay
Seung Hyun Han

關鍵詞

抽象

Vibrio cholerae can cause severe diarrhea and dehydration leading to high mortality and morbidity. Current cholera vaccines are formulated with KVC. Although the innate immune responses following vaccination deeply influence the induction of adaptive immunity, the initial recognition of cholera vaccines by the host innate immune system is not well characterized. In this study, the ability of KVC to induce innate immune responses was investigated. Unlike typical Gram-negative bacteria stimulating TLR2 and TLR4, KVC activated TLR2 but hardly TLR4. However, purified V. cholerae LPS preferentially stimulated TLR4, although not as potently as LPS of other Gram-negative bacteria, implying that LPS is not a major immunostimulatory component of KVC. Instead, MPFs were similar to KVC in the capacity to activate TLR2, transcription factors, and cytokine expression. Furthermore, OmpU is an abundant membrane protein of V. cholerae and could interact with TLR2 for inducing cytokine expression. Notably, cholera vaccine-induced immune responses are impaired in TLR2(-/-) mice. Conclusively, TLR2 is essential for the immune responses to cholera vaccination, and OmpU is the major immunostimulatory component of cholera vaccines.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge