中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2020-Oct

Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Ruma Ranjan
Navin Kumar
Ambedkar Gautam
Arvind Dubey
Shyam Pandey
Shekhar Mallick

關鍵詞

抽象

The present study investigates the role of Chlorella sp. in the mitigation of arsenic (iAs) induced toxicity in Oryza sativa L. The study shows, co-culture of rice seedlings with Chlorella sp. reduced the iAs accumulation, simultaneously improving the growth of seedlings under iAs treatments. While treatment with As(III) and As(V) (60 µM) alone, inflicted toxicity in rice seedlings, manifested as significant enhancement in stress markers levels (TBRAS and H2O2), this coincided with the shifting of cellular reduced state to oxidized state (reduced GSH/GSSG ratio). Contrarily, co-culturing rice seedlings with Chlorella sp. under iAs toxicity, reduced these stress markers and recovered the GSH/GSSG ratio. The GSH dependent antioxidant enzymes i.e. GR and GPX activities also exhibited significant enhancement upon co-culturing rice seedlings with Chlorella sp. against iAs stress. Simultaneously, the expression of four thiol dependent GRX genes, i.e. GRX13950, GRX35340, GRX12190 and GRX07950 were enhanced against As(III) and As(V) (60 µM), which reduced upon co-culturing with Chlorella sp. A similar trend was also observed with the expression of GST genes, where the co-culture with Chlorella sp. significantly reduced the genes expression of two isoforms (GST 38600 and GST 38610). On the contrary, the expression of S-adenosylmethionine dependent methyltransferases (SAMT) gene in rice seedlings was enhanced upon co-culturing with the Chlorella sp. against iAs stress. Overall, the results demonstrate that the rice seedlings when co-culture with Chlorella sp. ameliorates iAs toxicity through GSH dependent detoxification pathway, evident from the enhanced expression of GRX, GST, SAMT genes and activity of GSH dependent antioxidant enzymes (GR and GPX) in the rice seedlings.

Keywords: Arsenic; Chlorella sp.; Glutaredoxin; Glutathione-S-transferase; Oryza sativa L.; SAMT.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge