中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Applied Materials & Interfaces 2020-Sep

In Situ Self-assembly of Nanoparticles into Waxberry-like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogel

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Yang Qin
Chao Qiu
Yao Hu
Shengju Ge
Jinpeng Wang
Zhengyu Jin

關鍵詞

抽象

Owing to the diminishing resources and growing awareness of environmental issues, significant scientific attention has been paid to the development of physical gel materials using renewable and low-cost natural resources. Inspired by the strengthened mechanism of double-network and nanocomposite gels, we report a facile and green method to realize a mechanically stiff, fatigue-resistant, and adhesive-debranched waxy corn starch/PVA double-crosslinked nanocomposite gel (W-Gel) skeleton material with dynamic non-covalent bonds. The in situ formation of DBS nanoparticles leads to self-assembly into 3D waxberry-like microspheres, which act as physical crosslinkers by embedding themselves within network skeleton structures. The resulting hydrogel exhibited excellently mechanical behavior, including a good stretchability over 1200% strain, a maximum compressive strength of up to 780.7 ± 27.8 kPa, and the ability to sustain as much weight as 4.6 kg (about 2,000 times its own weight). Notably, the recovery efficiency exceeded 93% after the 60th compressive successive loading-unloading cycle at 50% strain. The hydrogel successfully adhered onto soft and hard substrates, such as skins, plastics, gauzes, glasses, and metals, manifesting in long-term, stable sustained release of epigallocatechin gallate (EGCG). The EGCG-loaded W-Gels exhibited predominant antibacterial activity against both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli and S. typhus).

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge