中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Colloids and Surfaces B: Biointerfaces 2020-Jun

Programmed antibacterial and mineralization therapy for dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid material

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Xiaoyang Xu
Nan Wang
Mingzhen Wu
Jie Wang
Dingqian Wang
Zhuoxin Chen
Jing Xie
Chunmei Ding
Jianshu Li

關鍵詞

抽象

The domination of cariogenic bacteria in dental plaque biofilms is the primary cause of dental caries. In view of this, for the purpose of an effective treatment of dental caries, it is of great importance to inhibit the activity of acidogenic bacteria and promote the remineralization of damaged teeth simultaneously. However, the expensive antibacterial agents and poor mineralization ability of materials limit the practical applications. Biomineralization regulated by non-collagenous proteins (NCPs) gives hints to combine the remineralization ability of NCPs with accessible antibacterial property effectively. In this work, we propose a programmed antibacterial and remineralization strategy for the therapy of dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid nanoneedles (ZHA@ALN-PAA). This hybrid material dissolves in the acidic caries environment and regulate the pH to nearly neutral (6.5). Abundant calcium/ phosphate ions are supplemented and the ALN-PAA embedded in it has also been released, which assists the biomineralization on tooth defect. It has been revealed that the inhibition ratio of ZHA@ALN-PAA against Streptococcus mutans is the highest (11.25 folds that of HA), which originates from the highest zinc ions released (132.9 mg/L). Besides, the interspace of etched enamel is fully filled with regenerated nanorods and the surface microhardness (SMH) is significantly improved (3.68 folds that of etched enamel) after only 3 days of mineralization in vitro. This strategy developed here is simple and cost-effective, which can be referred to design the effective anti-caries materials applied for clinic treatment and daily oral care.

Keywords: Alendronate-grafted polyacrylic acid; Antibacterial; Dental caries; Mineralization; Zinc-substituted hydroxyapatite.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge