中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteome Research 2020-Sep

Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and insilico screening of main protease inhibitors

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Achutha S
Pushpa L
Suchitra Surendran

關鍵詞

抽象

Corona virus disease (COVID19) is a dangerous disease rapidly spreading all over the world today. Currently there are no treatment options for it. Drug repurposing studies explored the potency of antimalarial drugs, chloroquine and hydroxychloroquine, against SARS-CoV-2 virus. These drugs can inhibit the viral protease, called chymotrypsin-like cysteine protease also known as Main protease (3CLpro), hence we studied the binding efficiencies of 4-aminoquinoline and 8-aminoquinoline analogs of chloroquine. Six compounds furnished better binding energies than chloroquine and hydroxychloroquine. The interactions with the active site residues especially with Cys145 and His41, which are involved in catalytic diad for proteolysis, make these compounds as potent main protease inhibitors. A regression model correlating binding energy and the molecular descriptors for chloroquine analogs was generated with R2=0.9039 and Q2= 0.8848. This model was used to screen new analogs of primaquine and molecules from Asinex compound library. The docking and regression analysis showed these analogs to be more potent inhibitors of 3CLpro than hydroxychloroquine and primaquine. The molecular dynamic simulations of the hits were carried out to determine the binding stabilities. Finally, we propose four compounds which show drug likeness towards SARS-CoV-2 that can be further validated through invitro and invivo studies.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge