中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

mentha/dental caries

鏈接已保存到剪貼板
文章臨床試驗專利權
7 結果
Overexpression of the tobacco lipid transfer protein (NtLTP1) gene in transgenic orange mint resulted in enhanced accumulation of monoterpenes in the cavity of head cells of glandular trichomes, which resulted in enhanced emission of monoterpenes from transgenic orange mints. Plants in the genus
Peltate glandular trichomes from Mentha spicata were purified on a Percoll gradient and soluble and membrane proteins were trypsinized and the peptides were separated by nano-LC fractionation and analyzed by MALDI-MS/MS. The vast majority of the 1666 proteins identified were housekeeping proteins or
The paper describes the effects of peppermint (Mentha piperita) essential oil inhaled by patients with infiltrative pulmonary tuberculosis in the penitentiary system. This procedure is shown to be most effective in infiltrative pulmonary tuberculosis in the phase of resorption of infiltrates and/or
The present study was carried out to clarify the effects of extracts of the leaves of Mentha piperita L. on experimental allergic rhinitis. The 50% EtOH extract of peppermint inhibited histamine release from rat peritoneal mast cells induced by compound 48/80. The effect was dose-dependent and
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve
Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge