Azerbaijani
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Immunopathology and Pharmacology

In vitro and in vivo therapeutics of β-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice.

Yalnız qeydiyyatdan keçmiş istifadəçilər məqalələri tərcümə edə bilərlər
Giriş / Qeydiyyatdan keçin
Bağlantı panoya saxlanılır
M-F Shih
L-Y Chen
P-J Tsai
J-Y Cherng

Açar sözlər

Mücərrəd

β-thujaplicin, an active constituent from Chamaecyparis obtusa, has been shown to have acaricidal and antimicrobial effects. Very few studies have focused on the potential of the anti-inflammatory effect of β-thujaplicin. Moreover, its capability of inhibiting inflammatory mediators e.g. TNF-a gene transcription, nitric oxide (NO) and prostaglandin E2, remains unknown. Besides those molecular mechanisms behind the anti-inflammatory effect of β-thujaplicin, solid proof of its effectiveness in vivo has not yet been studied. In our study, in vitro effects of β thujaplicin were verified on RAW 264.7 macrophages which were stimulated by LPS. Indomethacin was used as a positive control. The inducible NO production after stimulation was measured by Griess reagent. PGE2, IL-6 and TNF-α were measured by ELISA methods. Protein expressions of iNOS, COX2, and NF-κB were evaluated by Western blotting. Septic ICR mice were administered 20 mg/kg of LPS and then the mortality rate was monitored. Within the concentration range which was devoid of cytotoxicty, β-thujaplicin exhibited a clear dose-dependent inhibition on LPS-induced NO production. Furthermore, β-thujaplicin inhibited LPS-induced PGE2, IL-6, and TNF-α production as well as iNOS, COX2, and NF- κB protein expression more substantially potent than indomethacin. In agreement with the in vitro study, β-thujaplicin was shown to be effective in vivo for inhibiting LPS-induced NO and TNF-α production and a significant decrease in mortality rate of mice suffering from septic shock was observed. This study demonstrates the potential of β-thujaplicin in treatment of inflammation and sepsis. These effects occur through an efficient blockage of TNF-α and iNOS production. β-thujaplicin efficacy is comparable to that of indomethacin thus it can be a substitution but bear less depletion of PGE2, making this compound very promising in clinical applications. β-thujaplicin, an active constituent from Chamaecyparis obtusa, has been shown to have acaricidal and antimicrobial effects. Very few studies have focused on the potential of the anti-inflammatory effect of β-thujaplicin. Moreover, its capability of inhibiting inflammatory mediators e.g. TNF-alpha gene transcription, nitric oxide (NO) and prostaglandin E2, remains unknown. Besides those molecular mechanisms behind the anti-inflammatory effect of β-thujaplicin, solid proof of its effectiveness in vivo has not yet been studied. In our study, in vitro effects of β-thujaplicin were verified on RAW 264.7 macrophages which were stimulated by LPS. Indomethacin was used as a positive control. The inducible NO production after stimulation was measured by Griess reagent. PGE2, IL-6 and TNF-alpha were measured by ELISA methods. Protein expressions of iNOS, COX2, and NF-kB were evaluated by Western blotting. Septic ICR mice were administered 20 mg/kg of LPS and then the mortality rate was monitored. Within the concentration range which was devoid of cytotoxicty, β-thujaplicin exhibited a clear dose-dependent inhibition on LPS-induced NO production. Furthermore, β-thujaplicin inhibited LPS-induced PGE2, IL-6, and TNF-alpha production as well as iNOS, COX2, and NF-kB protein expression more substantially potent than indomethacin. In agreement with the in vitro study, β-thujaplicin was shown to be effective in vivo for inhibiting LPS-induced NO and TNF-alpha production and a significant decrease in mortality rate of mice suffering from septic shock was observed. This study demonstrates the potential of β-thujaplicin in treatment of inflammation and sepsis. These effects occur through an efficient blockage of TNF-alpha and iNOS production. β-thujaplicin efficacy is comparable to that of indomethacin thus it can be a substitution but bear less depletion of PGE2, making this compound very promising in clinical applications.

Facebook səhifəmizə qoşulun

Elm tərəfindən dəstəklənən ən tam dərman bitkiləri bazası

  • 55 dildə işləyir
  • Elm tərəfindən dəstəklənən bitki mənşəli müalicələr
  • Təsvirə görə otların tanınması
  • İnteraktiv GPS xəritəsi - yerdəki otları etiketləyin (tezliklə)
  • Axtarışınızla əlaqəli elmi nəşrləri oxuyun
  • Təsirlərinə görə dərman bitkilərini axtarın
  • Maraqlarınızı təşkil edin və xəbər araşdırmaları, klinik sınaqlar və patentlər barədə məlumatlı olun

Bir simptom və ya bir xəstəlik yazın və kömək edə biləcək otlar haqqında oxuyun, bir ot yazın və istifadə olunan xəstəliklərə və simptomlara baxın.
* Bütün məlumatlar dərc olunmuş elmi araşdırmalara əsaslanır

Google Play badgeApp Store badge