Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemical Analysis

Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays).

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Claire L Gavaghan
Jia V Li
Stephen T Hadfield
Stephen Hole
Jeremy K Nicholson
Ian D Wilson
Peter W A Howe
Paul D Stanley
Elaine Holmes

Nøgleord

Abstrakt

BACKGROUND

High salinity, caused by either natural (e.g. climatic changes) or anthropic factors (e.g. agriculture), is a widespread environmental stressor that can affect development and growth of salt-sensitive plants, leading to water deficit, the inhibition of intake of essential ions and metabolic disorders.

OBJECTIVE

The application of an NMR-based metabolic profiling approach to the investigation of saline-induced stress in Maize plants is presented.

METHODS

Zea Maize seedlings were grown in either 0, 50 or 150 mM saline solution. Plants were harvested after 2, 4 and 6 days (n = 5 per class and time point) and (1) H NMR spectroscopy was performed separately on shoot and root extracts. Spectral data were analysed and interpreted using multivariate statistical analyses.

RESULTS

A distinct effect of time/growth was observed for the control group with relatively higher concentrations of acetoacetate at day 2 and increased levels of alanine at days 4 and 6 in root extracts, whereas concentration of alanine was positively correlated with the shoot extracts harvested at day 2 and trans-aconitic acid increased at days 4 and 6. A clear dose-dependent effect, superimposed on the growth effect, was observed for saline treated shoot and root extracts. This was correlated with increased levels of alanine, glutamate, asparagine, glycine-betaine and sucrose and decreased levels of malic acid, trans-aconitic acid and glucose in shoots. Correlation with salt-load shown in roots included elevated levels of alanine, γ-amino-N-butyric acid, malic acid, succinate and sucrose and depleted levels of acetoacetate and glucose.

CONCLUSIONS

The metabolic effect of high salinity was predominantly consistent with osmotic stress as reported for other plant species and was found to be stronger in the shoots than the roots. Using multivariate data analysis it is possible to investigate the effects of more than one environmental stressor simultaneously.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge