Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the National Cancer Institute 1996-Sep

Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
C G Milross
K A Mason
N R Hunter
W K Chung
L J Peters
L Milas

Nøgleord

Abstrakt

BACKGROUND

Microtubules are cellular organelles with functions that include control of cell division by mitosis, cell morphology, and transport of material within the cell. The anticancer drug paclitaxel (Taxol) promotes accelerated assembly of excessively stable microtubules. Consequently, treated cells tend to become arrested in mitosis. The drug also induces apoptotic cell death in vitro and in vivo. Prior to this study, the relative contributions of mitotic arrest and apoptosis to the in vivo antitumor effect and the relationship between the two factors had not been established; moreover, it is not known whether paclitaxel-induced mitotic arrest inevitably results in cell death.

OBJECTIVE

Our aim was to quantify the mitotic arrest and apoptosis induced by paclitaxel in 16 murine tumors in vivo and to correlate these two factors with the drug's antitumor effect.

METHODS

Inbred C3Hf/Kam mice were implanted with one of the following 16 syngeneic tumors: seven adenocarcinomas (MCa-4, MCa-29, MCa-35, MCa-K, OCa-I, ACa-SG, and HCa-I), two squamous cell carcinomas (SCC-IV and SCC-VII), six sarcomas (FSa, FSa-II, Sa-IIa, Sa-NH, NFSa, and Sa-4020), and one lymphoma (Ly-TH). The tumor growth delay induced by paclitaxel (40 mg/kg body weight given intravenously) was measured in 163 control and 163 treated mice, and its significance was assessed by Student's t test. In a separate group of 439 mice, the percentage of cells in mitosis or apoptosis was scored micromorphometrically at various times after paclitaxel administration. The significance of correlations between paclitaxel-induced tumor growth delay and paclitaxel-induced levels of mitosis or apoptosis was determined by simple correlation and Spearman's rank correlation. P values reported represent two-sided tests of statistical significance.

RESULTS

Statistically significant tumor growth delays were found in response to paclitaxel treatment of mice for three of four murine mammary carcinomas (all P < or = .010), an ovarian carcinoma (P = .00003), a salivary gland adenocarcinoma (P = .0002), a lymphoma (P = .0002), and two of six sarcomas (both P < or = .034), but not for either of two squamous cell carcinomas or for the hepatocellular carcinoma. Paclitaxel-induced mitotic arrest was apparent in all tumor types, but to various degrees, and was not significantly correlated with growth delay (R2 = .16; P = .124). In contrast, apoptotic cell death in response to paclitaxel was not ubiquitous, but it was strongly correlated with growth delay (R2 = .59; P = .001). The pretreatment level of apoptosis was correlated with both paclitaxel-induced apoptosis (R2 = .71; P = .00004) and tumor growth delay (R2 = .55; P = .001).

CONCLUSIONS

The antitumor effect of paclitaxel was correlated with paclitaxel-induced apoptosis and base-line apoptosis, but not with mitotic arrest.

CONCLUSIONS

Apoptosis is an important mechanism of cell death in response to paclitaxel treatment of in vivo murine tumors. An underlying tumor type-specific propensity for apoptosis is implied by the correlation between pretreatment and paclitaxel-induced apoptosis. Both the extent of pretreatment apoptosis and the paclitaxel-induced percentage of apoptosis may be useful predictors of response to the drug.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge