English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2001-Sep

Inhibition of benzo[a]pyrene- and cyclophoshamide-induced mutagenicity by Cinnamomum cassia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N Sharma
P Trikha
M Athar
S Raisuddin

Keywords

Abstract

Cinnamomum cassia is used as a flavoring spice with some established medicinal properties. In this study, we evaluated the antimutagenic effect of C. cassia against two mutagens, viz. benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). The antimutagenic properties of C. cassia were examined by the Ames test. In vivo chromosomal aberration (CA) and micronuclei tests were also employed to assess the antimutagenic effect of C. cassia in mice after pretreatment with the extract orally for seven consecutive days. To elucidate the mechanism by which C. cassia exerts its antimutagenic effect, certain key enzymes involved in bioactivation and detoxification processes were also investigated. Changes in liver cytochrome P450 (Cyt P450), glutathione content (GSH), glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPX) were evaluated in pretreated animals. It was observed in the Ames test, bone marrow chromosomal aberration assay, and micronucleus test that C. cassia exerted significant antimutagenic effects against B[a]P and CP in animals treated with the plant extract. C. cassia pretreatment decreased Cyt P450 content but increased GSH content and the activity of glutathione-dependent antioxidant enzymes, viz. GST, GR, and GPX. The present findings demonstrate that the antimutagenic potential of C. cassia could be attributed to its modulatory effect on the xenobiotic bioactivation and detoxification processes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge