English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Jun

TeA is a key virulence factor for Alternaria alternata (Fr.) Keissler infection of its host.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ye Kang
Hongwei Feng
Jingxu Zhang
Shiguo Chen
Bernal E Valverde
Sheng Qiang

Keywords

Abstract

A toxin-deficient mutant strain, HP001 mutant of Alternaria alternata, whose mycelium is unable to infect its host, produces little tenuazonic acid (TeA) toxin. How TeA plays a role in initiating host infection by A. alternata remains unclear. In this research we use Imaging-PAM based on chlorophyll fluorescence parameters and transmission electron microscopy to explore the role of TeA toxin during the infection process of A. alternata. Photosystem II damage began even before wild type mycelium infected the leaves of its host, croftonweed (Ageratina adenophora). Compared with the wild type, HP001 mutant produces morphologically different colonies, hyphae with thinner cell walls, has higher reactive oxygen species (ROS) content and lower peroxidase activity, and fails to form appressoria on the host surface. Adding TeA toxin allows the mutant to partially recover these characters and more closely resemble the wild type. Additionally, we found that the mutant is able to elicit disease symptoms when its mycelium is placed on leaves whose epidermis has been manually removed, which indicates that TeA may be determinant in the fungus recognition of its plant host. Lack of TeA toxin appears responsible for the loss of pathogenicity of the HP001 mutant. As a key virulence factor, TeA toxin not only damages the host plant but also is involved in maintaining ROS content, host recognition, inducing appressoria to infect the host and for allowing completion of the infection process.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge