English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pheophytin/arabidopsis thaliana

The link is saved to the clipboard
ArticlesClinical trialsPatents
13 results

Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves.

Only registered users can translate articles
Log In/Sign up
Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables photosynthesis, it appears to have no role in photoactive green leaves. Here, colorless PBs were detected in green,

Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that

PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies.

Only registered users can translate articles
Log In/Sign up
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different

Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples.

Only registered users can translate articles
Log In/Sign up
BACKGROUND When conducting plant research, the measurement of photosynthetic pigments can provide basic information on the physiological status of a plant. High-pressure liquid chromatography (HPLC) is becoming widely used for this purpose because it provides an accurate determination of a variety

Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.

Only registered users can translate articles
Log In/Sign up
Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide

Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?

Only registered users can translate articles
Log In/Sign up
Dissipation of light energy was studied in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst., and in leaves of Spinacia oleracea L. and Arabidopsis thaliana (L.) Heynh., using chlorophyll fluorescence as an indicator reaction. Maximum chlorophyll fluorescence of

Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.

Only registered users can translate articles
Log In/Sign up
Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are

Arabidopsis STAY-GREEN, Mendel's Green Cotyledon Gene, Encodes Magnesium-Dechelatase.

Only registered users can translate articles
Log In/Sign up
Pheophytin a is an essential component of oxygenic photosynthetic organisms because the primary charge separation between chlorophyll a and pheophytin a is the first step in the conversion of light energy. In addition, conversion of chlorophyll a to pheophytin a is the first step of chlorophyll

Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown.

Only registered users can translate articles
Log In/Sign up
During leaf senescence and fruit ripening, chlorophyll is degraded in a multistep pathway into linear tetrapyrroles called phyllobilins. A key feature of chlorophyll breakdown is the removal of the hydrophobic phytol chain that renders phyllobilins water soluble, an important prerequisite for their

Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression

A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions.

Only registered users can translate articles
Log In/Sign up
Epigenetic variation has been proposed to facilitate adaptation to changing environments, but evidence that natural epialleles contribute to adaptive evolution has been lacking. Here we identify a retrotransposon, named "NMR19" (naturally occurring DNA methylation variation region 19), whose

Characterization of the pheophorbide a oxygenase/phyllobilin pathway of chlorophyll breakdown in grasses.

Only registered users can translate articles
Log In/Sign up
UNASSIGNED Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby,

Salinity Stress-Mediated Suppression of Expression of Salt Overly Sensitive Signaling Pathway Genes Suggests Negative Regulation by AtbZIP62 Transcription Factor in Arabidopsisthaliana.

Only registered users can translate articles
Log In/Sign up
Salt stress is one of the most serious threats in plants, reducing crop yield and production. The salt overly sensitive (SOS) pathway in plants is a salt-responsive pathway that acts as a janitor of the cell to sweep out Na+ ions. Transcription factors (TFs) are key regulators of
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge