Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Glycoconjugate Journal 2006-May

Increased expression of peripheral benzodiazepine receptor (PBR) in dimethylbenz[a]anthracene-induced mammary tumors in rats.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Sutapa Mukhopadhyay
Shyamali Mukherjee
Salil K Das

Palabras clave

Abstracto

Expression of peripheral benzodiazepine receptors (PBR) has been found in every tissue examined; however, it is most abundant in steroid-producing tissues. Although the primary function of PBR is the regulation of steroidogenesis, its existence in nonsteroidogenic tissues as well as in other cellular compartments including the nucleus suggests that there may be other roles for PBR. Our laboratory reported earlier a significant increase of PBR density in the nucleus of DMBA-induced malignant submandibular glands of rats, suggesting a role of PBR in nuclear events of peripheral tissues. Since then numerous studies have demonstrated the abundance of PBR in tumors. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. Based on studies with a battery of human breast cancer cell lines and several human tissue biopsies, Hardwick et al. suggested that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression. The purpose of the present study is to confirm this hypothesis by developing an animal breast cancer model and correlating the above events with the breast cancer. Weanling rats were maintained on a diet containing animal protein (casein) for 30 days and then a single dose of DMBA in sesame oil (80 mg/kg) was administered by gavage to the animals. Control animals received the vehicle only. After 122 days of DMBA administration, the animals were sacrificed. All tumors were detected by palpation. B(max) of PBRs was 52.6% and 128.4% higher in the non-aggressive and aggressive cancer tissues, respectively, than that in normal tissues. Cholesterol uptake into isolated nuclei was found to be higher in both non-aggressive and aggressive tumor breast tissue than that in control tissue. There was also corresponding increase in B(max) of PBRs in the nucleus of cancer tissues. Furthermore, the nuclear nucleoside triphosphatase (NTPase) activity was found to be higher in aggressive tumor tissues than that in non-aggressive tumor tissues. In conclusion, these data suggest that PBR ligand binding, and PBR-mediated cholesterol transport into the nucleus may be involved in the development of mammary gland adenocarcinoma, thus participating in the advancement of the disease.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge