Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2012-Dec

Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Dorian R A Swarts
Frans C S Ramaekers
Ernst-Jan M Speel

Palabras clave

Abstracto

Pulmonary neuroendocrine tumors (NETs) are traditionally described as comprising a spectrum of neoplasms, ranging from low grade typical carcinoids (TCs) via the intermediate grade atypical carcinoids (ACs) to the highly malignant small cell lung cancers (SCLCs) and large cell neuroendocrine carcinomas (LCNECs). Recent data, however, suggests that two categories can be distinguished on basis of molecular and clinical data, i.e. the high grade neuroendocrine (NE) carcinomas and the carcinoid tumors. Bronchial carcinoids and SCLCs may originate from the same pulmonary NE precursor cells, but a precursor lesion has only been observed in association with carcinoids, termed diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. The occurrence of mixed tumors exclusively comprising high grade NE carcinomas also supports a different carcinogenesis for these two groups. Histopathologically, high grade NE lung tumors are characterized by high mitotic and proliferative indices, while carcinoids are defined by maximally 10 mitoses per 2mm(2) (10 high-power fields) and rarely have Ki67-proliferative indices over 10%. High grade NE carcinomas are chemosensitive tumors, although they usually relapse. Surgery is often not an option due to extensive disease at presentation and early metastasis, especially in SCLC. Conversely, carcinoids are often insensitive to chemo- and radiation therapy, but cure can usually be achieved by surgery. A meta-analysis of comparative genomic hybridization studies performed for this review, as well as gene expression profiling data indicates separate clustering of carcinoids and carcinomas. Chromosomal aberrations are much more frequent in carcinomas, except for deletion of 11q, which is involved in the whole spectrum of NE lung tumors. Deletions of chromosome 3p are rare in carcinoids but are a hallmark of the high grade pulmonary NE carcinomas. On the contrary, mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are restricted to carcinoid tumors. Many of the differences between carcinoids and high grade lung NETs can be ascribed to tobacco consumption, which is strongly linked to the occurrence of high grade NE carcinomas. Smoking causes p53 mutations, very frequently present in SCLCs and LCNECs, but rarely in carcinoids. It further results in other early genetic events in SCLCs and LCNECs, such as 3p and 17p deletions. Smoking induces downregulation of E-cadherin and associated epithelial to mesenchymal transition. Also, high grade lung NETs display higher frequencies of aberrations of the Rb pathway, and of the intrinsic and extrinsic apoptotic routes. Carcinoid biology on the other hand is not depending on cigarette smoke intake but rather characterized by aberrations of other specific genetic events, probably including Menin or its targets and interaction partners. This results in a gradual evolution, most likely from proliferating pulmonary NE cells via hyperplasia and tumorlets towards classical carcinoid tumors. We conclude that carcinoids and high grade NE lung carcinomas are separate biological entities and do not comprise one spectrum of pulmonary NETs. This implies the need to reconsider both diagnostic as well as therapeutic approaches for these different groups of malignancies.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge