Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2020-Oct

First Report of Diaporthe fusicola Causing Leaf Blotch of Osmanthus fragrans in China

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Yuan-Zhi Si
Xiao-Ping Guo
De-Wei Li
Si Wu
Li-Hua Zhu

Palabras clave

Abstracto

Osmanthus fragrans Lour. is widely distributed in China, Japan, Thailand and India (Zang et al., 2003) and one of the top 10 most well-known flowering plants in China. Since February, 2017, a foliar disease, with a disease incidence of ~60%, occurred on O. fragrans in a community park in Luzhai, Guangxi, China. Symptoms began as round or irregular small yellow spots and became pale brown to gray-brown with time. Small leaf tissues (3 to 4 mm2) cut from lesion margins were surface-sterilized in 75% ethanol for 30 s and 1% NaClO for 90 s before they were rinsed in ddH2O and dried on sterilized filter paper. After drying, the sterilized tissues were plated on potato dextrose agar (PDA) and incubated at 25°C in the dark for 5 days. Five single-spore isolates were obtained and a representative isolate (GH3) was selected and deposited in the China's Forestry Culture Collection Center. The colony on PDA was white with concentric zonation and white aerial mycelia, but the reverse was yellow. Black pycnidia developed on alfalfa extract + Czapek at 25°C with a 14/10 h light/dark cycle after 17 days. Conidiophores were hyaline, branched, septate, straight to sinuous, 12.4-24 × 1.9-2.5 μm (n = 20). The conidia were fusoid, hyaline, smooth, mostly 2-guttules and measured 7.2 ± 0.7 × 2.3 ± 0.2 μm (n = 50). The morphological characters of pycnidia, conidiophores and conidia of all five isolates matched those of Diaporthe spp. (Gomes et al. 2013). DNA of isolates GH3, GH7 and GH8 was extracted and the internal transcribed spacer region (ITS), partial sequences of elongation factor 1-alpha (EF1-α), calmodulin (CAL), beta-tubulin (β-tub) and histone H3 (HIS) genes were amplified with primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R and CAL228F/CAL737R (Carbone et al. 1999), βt2a/βt2b and CYLH3F/H3-1b (Glass and Donaldson 1995, Crous et al. 2004), respectively. The sequences of GH3, GH7 and GH8 were deposited in GenBank (GH3: Accession nos. MT499213 for ITS, MT506473 to MT506476 for EF1-α, β-tub, HIS, and CAL; GH7: MT856374 and MT860397 to MT860400; GH8: MT856375 and MT860401 to MT860404). BLAST results showed that the ITS, EF1-α, β-tub, HIS, and CAL sequences of GH3 were highly similar with sequences of Phomopsis sp. [LC168784 (ITS), Identities = 506/506(100%)], Diaporthe fusicola [MK654863 (EF1-α), Identities = 274/275(99%)], D. amygdali [MK570513 (β-tub), Identities = 461/461(100%)], D. fusicola [MK726253 (HIS), Identities = 403/403(100%)] and D. amygdali [KC343263 (CAL), Identities = 428/428(100%)], respectively. A maximum likelihood and Bayesian posterior probability analyses using IQtree v. 1.6.8 and Mr. Bayes v. 3.2.6 with the concatenated sequences placed isolates GH3, GH7 and GH8 in the D. fusicola cluster and separated them from D. eres and D. osmanthi, which were previously reported from Osmanthus spp. (Gomes et al., 2013; Long et al., 2019). Based on the multi-gene phylogeny and morphology, all three isolates were identified as D. fusicola. The pathogenicity of GH3 was tested on 1-yr-old seedlings of O. fragrans. Healthy leaves were wounded with a sterile needle and then inoculated with either 5-mm mycelial plugs cut from the edge of a 5-day-old culture of GH3 or 10 μL of conidial suspensions (106 conidia/mL). Control leaves were treated with PDA plugs or ddH2O. Three plants were used for each treatment. The plants were covered with a plastic bag after inoculation and sterilized H2O was sprayed into the bags twice/day to maintain humidity and kept in a greenhouse at the day/night temperatures at 25 ± 2°C/16 ± 2°C. Lesions appeared 3 days later. No lesions were observed on control leaves. The same fungus was re-isolated from lesions. This is the first report of D. fusicola causing leaf blotch on O. fragrans. These results form the basis for developing effective strategies for monitoring and managing this potential high-risk disease.

Keywords: Osmanthus fragrans; Causal Agent; Fungi; coelomycetes; new disease.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge