Finnish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Research report (Health Effects Institute) 2003-Dec

Peroxides and macrophages in the toxicity of fine particulate matter in rats.

Vain rekisteröityneet käyttäjät voivat kääntää artikkeleita
Kirjaudu sisään Rekisteröidy
Linkki tallennetaan leikepöydälle
Debra L Laskin
Lisa Morio
Kimberly Hooper
Tsung-Hung Li
Brian Buckley
Barbara Turpin

Avainsanat

Abstrakti

Epidemiologists have observed a positive association between human morbidity and mortality and the atmospheric concentrations of fine particulate matter (PM), but the mechanisms underlying the toxic effects of PM have not been elucidated. Various components of ambient PM have been implicated in toxicity (including ultrafine particles, transition metals, organics and oxidants). Our research focused on hydrogen peroxide (H2O2). We speculated that fine PM transports H2O2 into the lower lung, leading to tissue injury and to accumulation and activation of macrophages in these regions. The macrophages release cytotoxic mediators and proinflammatory cytokines that contribute to the pathogenesis of tissue injury. To test this hypothesis, we conducted studies to determine (1) whether tissue injury induced by aerosols is mediated by cytotoxic H2O2 carried into the lower lung by fine particles and (2) whether exposure of rats to fine PM leads to accumulation of activated macrophages in the lung. For our studies, systems were designed to generate model atmospheric fine PM and atmospheric peroxides consisting of an ammonium sulfate [(NH4)2SO4] aerosol (mass median diameter, 0.46 +/- 0.14 microm) and H2O2. We also constructed a 6-port nose-only exposure chamber. Female Sprague Dawley rats were exposed for 2 hours to aerosols consisting of (NH4)2SO4 (430 microg/m3), (NH4)2SO4 + 10, 20 or 100 ppb H2O2, vapor-phase H2O2 (10, 20 or 100 ppb), or particle-free air. Studies using oxygen-18 (18O)-labeled H2O2 were conducted to validate the transport of H2O2 into the lower lung with (NH4)2SO4. Rats were killed immediately (0 hours) or 24 hours after exposure. Compared with control animals, inhalation of (NH4)2SO4 and H2O2, alone or in combination, had no major effect on cell number or viability, protein content, or lactate dehydrogenase (LDH) levels in bronchoalveolar lavage (BAL) fluid collected either immediately or 24 hours after exposure. However, electron microscopy revealed that a larger number of neutrophils in pulmonary capillaries adhered to the vascular endothelium, especially in lungs of rats exposed to (NH4)2SO4 + H2O2. Inhalation of (NH4)2SO4 + H2O2 was also found to be associated with altered macrophage functional activity. Thus, exposing rats to (NH4)2SO4 + 20 ppb H2O2 or 20 ppb H2O2 alone caused a level of tumor necrosis factor alpha (TNF-alpha) production by lung macrophages that was higher than in controls. This higher level was observed immediately after exposure and persisted for at least 24 hours. Greater TNF-alpha production was also detected 24 hours after exposure to (NH4)2SO4 + 10 ppb H2O2. Immediately after rats inhaled (NH4)2SO4 + 10 ppb H2O2 or 20 ppb H2O2 alone, we also observed a transiently higher production of superoxide anion (O2-) by alveolar macrophages. Macrophages isolated 24 hours after exposure to 20 ppb H2O2 also produced larger quantities of superoxide anion. In contrast, immediately after exposure, macrophages from rats exposed to (NH4)2SO4 + 10 ppb H2O2 or to 20 ppb H2O2 alone generated less nitric oxide (NO). Reduced nitric oxide production was also observed 24 hours after exposure to (NH4)2SO4 + 10 ppb H2O2 or to 10 or 20 ppb H2O2 alone. Reduced nitric oxide production may have been due to superoxide anion-driven formation of peroxynitrite (ONOO-) anions. In this regard, nitrotyrosine, an in vivo marker of peroxynitrite, was detected in lung tissue immediately after rats were exposed to (NH4)2SO4 + H2O2 or to H2O2 alone (10 or 20 ppb). We also found that alveolar macrophages from rats exposed to (NH4)2SO4 + H2O2 showed a greater expression of the antioxidant enzyme heme oxygenase-1 (HO-1) when stimulated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Similar results were observed after exposure of rats to an organic peroxide aerosol (cumene hydroperoxide). Taken together, the results of our studies demonstrate that biological effects of inhaled H2O2 are augmented by fine PM. Moreover, tissue injury induced by (NH4)2SO4 + H2O2 may be related to altered production of cytotoxic mediators by alveolar macrophages. Determining the relevance of these toxicologic results to human health will be important in future studies for evaluating the risk of exposure.

Liity facebook-sivullemme

Täydellisin lääketieteellinen tietokanta tieteen tukemana

  • Toimii 55 kielellä
  • Yrttilääkkeet tieteen tukemana
  • Yrttien tunnistaminen kuvan perusteella
  • Interaktiivinen GPS-kartta - merkitse yrtit sijaintiin (tulossa pian)
  • Lue hakuusi liittyviä tieteellisiä julkaisuja
  • Hae lääkekasveja niiden vaikutusten perusteella
  • Järjestä kiinnostuksesi ja pysy ajan tasalla uutisista, kliinisistä tutkimuksista ja patenteista

Kirjoita oire tai sairaus ja lue yrtteistä, jotka saattavat auttaa, kirjoita yrtti ja näe taudit ja oireet, joita vastaan sitä käytetään.
* Kaikki tiedot perustuvat julkaistuun tieteelliseen tutkimukseen

Google Play badgeApp Store badge