Finnish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioconjugate Chemistry 2019-Dec

Revealing the significance of glycan binding property of butea monosperma seed lectin for enhancing the antibiofilm activity of silver nanoparticles against uropathogenic Escherichia coli.

Vain rekisteröityneet käyttäjät voivat kääntää artikkeleita
Kirjaudu sisään Rekisteröidy
Linkki tallennetaan leikepöydälle
Siva Subramaniyan
Rajendran Senthilnathan
Jothi Arunachalam
Veerappan Anbazhagan

Avainsanat

Abstrakti

The incompetence of conventional antibiotics against the bacteria residing in biofilm demands for newer therapeutic intervention. In this study, we demonstrated that the interaction between silver nanoparticles (AgNPs) and butea monosperma seed lectin (BMSL) form an efficient surface functionalized AgNPs with excellent antibiofilm competency against uropathogenic Escherichia coli (UPEC). The minimum biofilm inhibitory concentration (MBIC) of AgNPs and BMSL-AgNPs conjugate (BAgNPs) against UPEC was 75 M and 9.37 M, respectively. The eight folds reduction in MBIC of AgNPs was attributed to lectin func-tionalization. Chemical modification of Serine amino acids affects the hemeagglutination activity of BMSL, but not the interaction with AgNPs. At the same time, AgNPs surface functionalized with modified BMSL display poor antibiofilm activity. Molecular docking studies revealed BMSL binds to galactose with free energy of -5.72 kcal/mol, whereas Serine residue modified BMSL showed lowest free energy values, suggesting incompetence to bind galactose. These results showcases that the sugar binding site of BMSL aid the adhesion of AgNPs to the biofilm matrix and disturb the biofilm formation, which was confirmed by light micros-copy using crystal violet staining. BAgNPs also have the capability to eradicate pre-formed biofilm at 37.5 µM. As a proof of con-cept, UPEC biofilm prevention and eradication was demonstrated on urinary catheter. Scanning electron microscopy study showed that BAgNPs prevents the bacterial colonization to curtail biofilm growth. Besides antibiofilm activity, BAgNPs exert antibacterial activity at 18.75 µM, which is four fold lower than the MIC of AgNPs. Mechanistic study revealed that BAgNPs affects the bacte-rial outer membrane integrity and generates an imbalance in antioxidant defense to induce cell death. The results highlights that the lectin functionalization can be extended to other nanoparticles and different antibiotics to enhance their efficacy against drug resistance bacteria.

Liity facebook-sivullemme

Täydellisin lääketieteellinen tietokanta tieteen tukemana

  • Toimii 55 kielellä
  • Yrttilääkkeet tieteen tukemana
  • Yrttien tunnistaminen kuvan perusteella
  • Interaktiivinen GPS-kartta - merkitse yrtit sijaintiin (tulossa pian)
  • Lue hakuusi liittyviä tieteellisiä julkaisuja
  • Hae lääkekasveja niiden vaikutusten perusteella
  • Järjestä kiinnostuksesi ja pysy ajan tasalla uutisista, kliinisistä tutkimuksista ja patenteista

Kirjoita oire tai sairaus ja lue yrtteistä, jotka saattavat auttaa, kirjoita yrtti ja näe taudit ja oireet, joita vastaan sitä käytetään.
* Kaikki tiedot perustuvat julkaistuun tieteelliseen tutkimukseen

Google Play badgeApp Store badge