Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

acetaldehyde/kanker

Tautan disimpan ke clipboard
Halaman 1 dari 452 hasil
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B(1) exposure.
BACKGROUND An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1),
Increasing evidence indicates a strong relationship exists between harmful habits like smoking and alcohol drinking and upper digestive tract cancer. In addition, smokers and alcohol drinkers also exhibit high salivary levels of carcinogenic acetaldehyde, the first metabolite of alcohol. This
Recent studies from our laboratory provided evidence that part of the carcinogenic effects of ethanol consumption might be related to its in situ metabolism at cytosolic and microsomal levels, to the mutagen acetaldehyde and to hydroxyl and 1-hydroxyethyl radicals. In this work, we report on our
The activity and/or the level of the peroxisome proliferator-activated receptors (PPARs) in liver and oligodendrocytes are regulated by ethanol. Despite the association between ethanol consumption and breast cancer risk, and the increasing evidence for an involvement of PPARs in some cancers, there

Cancer induction in mice with acetaldehyde methylformylhydrazone of the false morel mushroom.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Acetaldehyde methylformylhydrazone (AMFH), which occurs up to 0.3% in one of the edible false morel mushrooms, Gyromitra esculenta, was administered to noninbred Swiss mice in propylene glycol in 52 weekly intragastric instillations as 100 micrograms/g body weight. The treatment induced tumors of

Increased acetaldehyde production by mouthwashings from patients with oral cavity, laryngeal, or pharyngeal cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Excessive ethanol consumption is associated with an increased risk of oral cavity, laryngeal, and pharyngeal cancer. Ethanol has been shown to be oxidized to acetaldehyde by microflora of the upper respiratory tract. As a highly toxic and reactive compound, acetaldehyde of microbial origin has been

Evaluation of potential salivary acetaldehyde production from ethanol in oral cancer patients and healthy subjects.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
BACKGROUND Acetaldehyde has been implicated as a major factor in oral carcinogenesis associated with alcohol consumption. In this study, saliva samples from oral cancer patients and healthy individuals were incubated in vitro with ethanol in order to investigate factors which can influence salivary
Epidemiological evidence links alcohol intake with increased risk in breast cancer. Not all the characteristics of the correlation can be explained in terms of changes in hormonal factors. In this work, we explore the possibility that alcohol were activated to acetaldehyde and free radicals in situ
The ability of the ventral prostate cytosolic fractions to biotransform ethanol to acetaldehyde and 1-hydroxyethyl (1HEt) radicals was tested. Acetaldehyde formation was determined by GC-FID analysis in the head space of incubation mixtures. 1HEt was determined by spin trapping with PBN followed by

Interrelationship between alcohol, smoking, acetaldehyde and cancer.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
In industrialized countries alcohol and tobacco are the main risk factors of upper digestive tract cancer. With regard to the pathogenesis of these cancers, there is strong epidemiological, biochemical and genetic evidence supporting the role of the first metabolite of alcohol

Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Alcohol drinking increases the risk for a number of cancers. Currently, the highest risk (Group 1) concerns oral cavity, pharynx, larynx, esophagus, liver, colorectum, and female breast, as assessed by the International Agency for Research on Cancer (IARC). Alcohol and other beverage constituents,
This account of recent work presented at the 4th International Symposium on Alcohol Pancreatitis and Cirrhosis reports animal studies aimed at determining the role of the "acetaldehyde burst," generated shortly upon ethanol intake, as the mechanism of protection against alcoholism conferred by the
Alcoholic liver disease (ALD) is one of the most common liver diseases in the world. Increased levels of proinflammatory cytokines, including interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), have been correlated with the patients affected by ALD. However, the direct effect
As the primary metabolite of alcohol, acetaldehyde (AA) may be responsible for many pathological effects related to consumption of alcohol, such as esophageal cancer. The spectrum of p53 mutations in esophageal tumors is indicative of the involvement of exogenous agents, such as tobacco smoke. There
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge