Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2007-Oct

Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Ayesha Zafir
Naheed Banu

Parole chiave

Astratto

Stress plays a potential role in the onset and exacerbation of depression. Chronic restraint stress in rats, and psychosocial stress in humans, is implicated in the pathophysiology of mood and anxiety disorders. Oxidative damage is an established outcome of restraint stress, which has been suggested to induce many damaging processes contributing to the pathology of stress-induced depression. However, the modulatory role of clinically effective antidepressants, such as fluoxetine, in attenuating oxidative stress has not been well characterized. Therefore, the current study was designed to investigate the antioxidant effects of chronic treatment with fluoxetine in animals submitted to restraint stress. The antioxidant potential of the antidepressant fluoxetine was compared with that of turmeric, used as a standard since it integrates both antioxidant and antidepressant properties. Chronic fluoxetine administration to stressed animals for 21 days prevented restraint stress-induced oxidative damage with an efficacy similar to that of turmeric, as evidenced by significant enhancement of key endogenous antioxidant defense components, comprising the free-radical scavenging enzymes, superoxide:superoxide oxidoreductase (EC 1.15.1.1), hydrogen-peroxide:hydrogen-peroxide oxidoreductase (EC 1.11.1.6), glutathione S-transferase (EC 2.5.1.18) and glutathione:NADP(+)oxidoreductase (EC 1.8.1.7), as well as non-enzymatic antioxidants, GSH, glucose and uric acid, which were severely depleted by restraint stress in animals receiving no treatment. Oxidative stress markers, (S)-lactate:NAD(+) oxidoreductase activity (EC 1.1.1.27), malondialdehyde levels (lipid peroxidation product) and protein carbonyl content were also significantly decreased following fluoxetine treatment. Both these drugs when given alone to non-stressed animals did not alter basal levels of antioxidant defense components and oxidative stress markers significantly. Our findings suggest that the therapeutic efficacy of fluoxetine may be mediated, at least partially, via reversal of oxidative damage as demonstrated by protective enhancement of antioxidant status following a stress-induced decline. In addition, this study demonstrates important implications for pharmacological interventions targeting cellular antioxidants as a promising strategy for protecting against oxidative insults in stress-induced depression.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge