Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Cell Factories 2019-Jan

Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Biplav Shrestha
Ramesh Pandey
Sumangala Darsandhari
Prakash Parajuli
Jae Sohng

Parole chiave

Astratto

BACKGROUND
Multi-monocistronic and multi-variate vectors were designed, built, and tested for the improved production of cyanidin 3-O-glucoside (C3G) in Escherichia coli BL21 (DE3). The synthetic bio-parts were designed in such a way that multiple genes can be assembled using the bio-brick system, and expressed under different promoters in a single vector. The vectors harbor compatible cloning sites, so that the genes can be shuffled from one vector to another in a single step, and assembled into a single vector. The two required genes: anthocyanidin synthase (PhANS) from Petunia hybrida, and cyanidin 3-O-glucosyltransferase (At3GT) from Arabidopsis thaliana, were individually cloned under PT7, Ptrc, and PlacUV5 promoters. Both PhANS and At3GT were shuffled back and forth, so as to generate a combinatorial system for C3G production. The constructed systems were further coupled with the genes for UDP-D-glucose synthesis, all cloned in a multi-monocistronic fashion under PT7. Finally, the production of C3G was checked and confirmed using the modified M9 media, and analyzed through various chromatography and spectrometric analyses.

RESULTS
The engineered strains endowed with newly generated vectors and the genes for C3G biosynthesis and UDP-D-glucose synthesis were fed with 2 mM (+)-catechin and D-glucose for the production of cyanidin, and its subsequent conversion to C3G. One of the engineered strains harboring At3GT and PhANS under Ptrc promoter and UDP-D-glucose biosynthesis genes under PT7 promoter led to the production of ~ 439 mg/L of C3G within 36 h of incubation, when the system was exogenously fed with 5% (w/v) D-glucose. This system did not require exogenous supplementation of UDP-D-glucose.

A synthetic vector system using different promoters has been developed and used for the synthesis of C3G in E. coli BL21 (DE3) by directing the metabolic flux towards the UDP-D-glucose. This system has the potential of generating better strains for the synthesis of valuable natural products.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge